A Th17 cell-intrinsic glutathione/mitochondrial-IL-22 axis protects against intestinal inflammation

IF 27.7 1区 生物学 Q1 CELL BIOLOGY
Lynn Bonetti, Veronika Horkova, Melanie Grusdat, Joseph Longworth, Luana Guerra, Henry Kurniawan, Davide G. Franchina, Leticia Soriano-Baguet, Carole Binsfeld, Charlène Verschueren, Sabine Spath, Anouk Ewen, Eric Koncina, Jean-Jacques Gérardy, Takumi Kobayashi, Catherine Dostert, Sophie Farinelle, Janika Härm, Yu-Tong Fan, Ying Chen, Dirk Brenner
{"title":"A Th17 cell-intrinsic glutathione/mitochondrial-IL-22 axis protects against intestinal inflammation","authors":"Lynn Bonetti, Veronika Horkova, Melanie Grusdat, Joseph Longworth, Luana Guerra, Henry Kurniawan, Davide G. Franchina, Leticia Soriano-Baguet, Carole Binsfeld, Charlène Verschueren, Sabine Spath, Anouk Ewen, Eric Koncina, Jean-Jacques Gérardy, Takumi Kobayashi, Catherine Dostert, Sophie Farinelle, Janika Härm, Yu-Tong Fan, Ying Chen, Dirk Brenner","doi":"10.1016/j.cmet.2024.06.010","DOIUrl":null,"url":null,"abstract":"<p>The intestinal tract generates significant reactive oxygen species (ROS), but the role of T cell antioxidant mechanisms in maintaining intestinal homeostasis is poorly understood. We used T cell-specific ablation of the catalytic subunit of glutamate cysteine ligase (<em>Gclc</em>), which impaired glutathione (GSH) production, crucially reducing IL-22 production by Th17 cells in the lamina propria, which is critical for gut protection. Under steady-state conditions, <em>Gclc</em> deficiency did not alter cytokine secretion; however, <em>C. rodentium</em> infection induced increased ROS and disrupted mitochondrial function and TFAM-driven mitochondrial gene expression, resulting in decreased cellular ATP. These changes impaired the PI3K/AKT/mTOR pathway, reducing phosphorylation of 4E-BP1 and consequently limiting IL-22 translation. The resultant low IL-22 levels led to poor bacterial clearance, severe intestinal damage, and high mortality. Our findings highlight a previously unrecognized, essential role of Th17 cell-intrinsic GSH in promoting mitochondrial function and cellular signaling for IL-22 protein synthesis, which is critical for intestinal integrity and defense against gastrointestinal infections.</p>","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"35 1","pages":""},"PeriodicalIF":27.7000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell metabolism","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cmet.2024.06.010","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The intestinal tract generates significant reactive oxygen species (ROS), but the role of T cell antioxidant mechanisms in maintaining intestinal homeostasis is poorly understood. We used T cell-specific ablation of the catalytic subunit of glutamate cysteine ligase (Gclc), which impaired glutathione (GSH) production, crucially reducing IL-22 production by Th17 cells in the lamina propria, which is critical for gut protection. Under steady-state conditions, Gclc deficiency did not alter cytokine secretion; however, C. rodentium infection induced increased ROS and disrupted mitochondrial function and TFAM-driven mitochondrial gene expression, resulting in decreased cellular ATP. These changes impaired the PI3K/AKT/mTOR pathway, reducing phosphorylation of 4E-BP1 and consequently limiting IL-22 translation. The resultant low IL-22 levels led to poor bacterial clearance, severe intestinal damage, and high mortality. Our findings highlight a previously unrecognized, essential role of Th17 cell-intrinsic GSH in promoting mitochondrial function and cellular signaling for IL-22 protein synthesis, which is critical for intestinal integrity and defense against gastrointestinal infections.

Abstract Image

Th17 细胞内在谷胱甘肽/微粒体-IL-22 轴可防止肠道炎症
肠道会产生大量活性氧(ROS),但人们对T细胞抗氧化机制在维持肠道平衡中的作用却知之甚少。我们利用T细胞特异性消减谷氨酸半胱氨酸连接酶(Gclc)的催化亚基,这将损害谷胱甘肽(GSH)的产生,从而减少固有层中Th17细胞产生的IL-22,而IL-22对肠道保护至关重要。在稳态条件下,Gclc 缺乏不会改变细胞因子的分泌;然而,鼠疫杆菌感染会诱发 ROS 增加,破坏线粒体功能和 TFAM 驱动的线粒体基因表达,导致细胞 ATP 减少。这些变化损害了 PI3K/AKT/mTOR 通路,减少了 4E-BP1 的磷酸化,从而限制了 IL-22 的翻译。由此造成的低 IL-22 水平导致细菌清除能力差、严重肠道损伤和高死亡率。我们的研究结果突显了 Th17 细胞内在 GSH 在促进线粒体功能和 IL-22 蛋白合成的细胞信号传导中的重要作用,而这一作用以前从未被认识到,它对肠道完整性和抵御胃肠道感染至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell metabolism
Cell metabolism 生物-内分泌学与代谢
CiteScore
48.60
自引率
1.40%
发文量
173
审稿时长
2.5 months
期刊介绍: Cell Metabolism is a top research journal established in 2005 that focuses on publishing original and impactful papers in the field of metabolic research.It covers a wide range of topics including diabetes, obesity, cardiovascular biology, aging and stress responses, circadian biology, and many others. Cell Metabolism aims to contribute to the advancement of metabolic research by providing a platform for the publication and dissemination of high-quality research and thought-provoking articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信