Efficient optimization of deep neural quantum states

IF 17.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
{"title":"Efficient optimization of deep neural quantum states","authors":"","doi":"10.1038/s41567-024-02567-0","DOIUrl":null,"url":null,"abstract":"An improved optimization algorithm enables the training of large-scale neural quantum states in which the enormous number of neuron connections capture the intricate complexity of quantum many-body wavefunctions. This advance leads to unprecedented accuracy in paradigmatic quantum models, opening up new avenues for simulating and understanding complex quantum phenomena.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"20 9","pages":"1381-1382"},"PeriodicalIF":17.6000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s41567-024-02567-0","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

An improved optimization algorithm enables the training of large-scale neural quantum states in which the enormous number of neuron connections capture the intricate complexity of quantum many-body wavefunctions. This advance leads to unprecedented accuracy in paradigmatic quantum models, opening up new avenues for simulating and understanding complex quantum phenomena.

Abstract Image

Abstract Image

深度神经量子态的高效优化
改进后的优化算法能够训练大规模神经量子态,其中大量神经元连接捕捉了量子多体波函数的复杂性。这一进步使典型量子模型达到了前所未有的精确度,为模拟和理解复杂量子现象开辟了新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Physics
Nature Physics 物理-物理:综合
CiteScore
30.40
自引率
2.00%
发文量
349
审稿时长
4-8 weeks
期刊介绍: Nature Physics is dedicated to publishing top-tier original research in physics with a fair and rigorous review process. It provides high visibility and access to a broad readership, maintaining high standards in copy editing and production, ensuring rapid publication, and maintaining independence from academic societies and other vested interests. The journal presents two main research paper formats: Letters and Articles. Alongside primary research, Nature Physics serves as a central source for valuable information within the physics community through Review Articles, News & Views, Research Highlights covering crucial developments across the physics literature, Commentaries, Book Reviews, and Correspondence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信