Vertically grown metal nanosheets integrated with atomic-layer-deposited dielectrics for transistors with subnanometre capacitance-equivalent thicknesses
IF 33.7 1区 工程技术Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
{"title":"Vertically grown metal nanosheets integrated with atomic-layer-deposited dielectrics for transistors with subnanometre capacitance-equivalent thicknesses","authors":"Lei Zhang, Zhaochao Liu, Wei Ai, Jiabiao Chen, Zunxian Lv, Bing Wang, Mingjian Yang, Feng Luo, Jinxiong Wu","doi":"10.1038/s41928-024-01202-3","DOIUrl":null,"url":null,"abstract":"Integrating thin atomic-layer-deposited dielectrics with two-dimensional (2D) semiconductors could be used to fabricate 2D transistors with sub-1 nm capacitance-equivalent thicknesses. However, non-uniform nucleation from atomic-layer deposition on inert surfaces and subsequent high-energy metal evaporation can make atomically thin dielectrics non-insulating. Here, we report a bismuth-oxide-assisted chemical vapour deposition method to synthesize single-crystalline metal nanosheets with atomically flat surfaces. The nanosheets grow vertically on a substrate and can be easily transferred to a target substrate through polymer-free mechanical pressing. We show that palladium nanosheets offer an excellent surface for atomic-layer deposition of flat aluminium oxide (Al2O3) and hafnium oxide (HfO2) dielectrics with sub-3 nm thicknesses. These can then be laminated onto few-layer molybdenum disulfide (MoS2) as a gate stack with a capacitance-equivalent thickness of 0.9 nm and a capacitance density of around 3.9 μF cm−2. Our MoS2 top-gated transistors with a 2-nm-thick Al2O3 or HfO2 dielectric exhibit leakage currents of 10−6 A cm−2, low operating voltages of around 0.45 V and a hysteresis of less than 1 mV. Vertical metal nanosheets with atomically flat surfaces grown with a bismuth-oxide-assisted chemical vapour deposition method can be used to make metal–oxide dielectric stacks and laminated onto two-dimensional semiconductors to create transistors with sub-1 nm capacitance-equivalent thicknesses.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":null,"pages":null},"PeriodicalIF":33.7000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Electronics","FirstCategoryId":"5","ListUrlMain":"https://www.nature.com/articles/s41928-024-01202-3","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Integrating thin atomic-layer-deposited dielectrics with two-dimensional (2D) semiconductors could be used to fabricate 2D transistors with sub-1 nm capacitance-equivalent thicknesses. However, non-uniform nucleation from atomic-layer deposition on inert surfaces and subsequent high-energy metal evaporation can make atomically thin dielectrics non-insulating. Here, we report a bismuth-oxide-assisted chemical vapour deposition method to synthesize single-crystalline metal nanosheets with atomically flat surfaces. The nanosheets grow vertically on a substrate and can be easily transferred to a target substrate through polymer-free mechanical pressing. We show that palladium nanosheets offer an excellent surface for atomic-layer deposition of flat aluminium oxide (Al2O3) and hafnium oxide (HfO2) dielectrics with sub-3 nm thicknesses. These can then be laminated onto few-layer molybdenum disulfide (MoS2) as a gate stack with a capacitance-equivalent thickness of 0.9 nm and a capacitance density of around 3.9 μF cm−2. Our MoS2 top-gated transistors with a 2-nm-thick Al2O3 or HfO2 dielectric exhibit leakage currents of 10−6 A cm−2, low operating voltages of around 0.45 V and a hysteresis of less than 1 mV. Vertical metal nanosheets with atomically flat surfaces grown with a bismuth-oxide-assisted chemical vapour deposition method can be used to make metal–oxide dielectric stacks and laminated onto two-dimensional semiconductors to create transistors with sub-1 nm capacitance-equivalent thicknesses.
期刊介绍:
Nature Electronics is a comprehensive journal that publishes both fundamental and applied research in the field of electronics. It encompasses a wide range of topics, including the study of new phenomena and devices, the design and construction of electronic circuits, and the practical applications of electronics. In addition, the journal explores the commercial and industrial aspects of electronics research.
The primary focus of Nature Electronics is on the development of technology and its potential impact on society. The journal incorporates the contributions of scientists, engineers, and industry professionals, offering a platform for their research findings. Moreover, Nature Electronics provides insightful commentary, thorough reviews, and analysis of the key issues that shape the field, as well as the technologies that are reshaping society.
Like all journals within the prestigious Nature brand, Nature Electronics upholds the highest standards of quality. It maintains a dedicated team of professional editors and follows a fair and rigorous peer-review process. The journal also ensures impeccable copy-editing and production, enabling swift publication. Additionally, Nature Electronics prides itself on its editorial independence, ensuring unbiased and impartial reporting.
In summary, Nature Electronics is a leading journal that publishes cutting-edge research in electronics. With its multidisciplinary approach and commitment to excellence, the journal serves as a valuable resource for scientists, engineers, and industry professionals seeking to stay at the forefront of advancements in the field.