CdS-carbon black hybrid nanocomposite buffer layer for antimony sulfide solar cells†

Ronal Edgardo Castellanos-Pineda, Agustin Baron-Jaimes, Mario Alejandro Millán-Franco, Marina Elizabeth Rincón and Oscar Andrés Jaramillo-Quintero
{"title":"CdS-carbon black hybrid nanocomposite buffer layer for antimony sulfide solar cells†","authors":"Ronal Edgardo Castellanos-Pineda, Agustin Baron-Jaimes, Mario Alejandro Millán-Franco, Marina Elizabeth Rincón and Oscar Andrés Jaramillo-Quintero","doi":"10.1039/D3LF00235G","DOIUrl":null,"url":null,"abstract":"<p >Hydrothermal synthesis of antimony sulfide (Sb<small><sub>2</sub></small>S<small><sub>3</sub></small>) has emerged as a suitable method to fabricate Sb<small><sub>2</sub></small>S<small><sub>3</sub></small> solar cells. Conventionally, a CdS film is essential to obtain homogeneous and high-quality Sb<small><sub>2</sub></small>S<small><sub>3</sub></small> films, which in turn improves the photovoltaic performance of Sb<small><sub>2</sub></small>S<small><sub>3</sub></small> devices. However, the CdS film also requires a post-treatment process to achieve the desired electronic conductivity. Herein, we report a hybrid nanocomposite buffer layer consisting of CdS and carbon black nanoparticles synthesized on a TiO<small><sub>2</sub></small> film by a one-pot chemical bath deposition route. This method enables high electrical conductivity of the buffer layer with low roughness and n-type nature. Thus, devices based on the nanocomposite buffer layer improve the junction quality at the buffer layer/Sb<small><sub>2</sub></small>S<small><sub>3</sub></small> interface, reducing the trap state recombination. As a result, the power conversion efficiency of the Sb<small><sub>2</sub></small>S<small><sub>3</sub></small> solar cell increases from 4.95 to 6.03%. Such improvement demonstrates that using the nanocomposite buffer layer is a facile and efficient approach to reduce the need for a post-treatment process of CdS.</p>","PeriodicalId":101138,"journal":{"name":"RSC Applied Interfaces","volume":" 4","pages":" 741-747"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/lf/d3lf00235g?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Applied Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/lf/d3lf00235g","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrothermal synthesis of antimony sulfide (Sb2S3) has emerged as a suitable method to fabricate Sb2S3 solar cells. Conventionally, a CdS film is essential to obtain homogeneous and high-quality Sb2S3 films, which in turn improves the photovoltaic performance of Sb2S3 devices. However, the CdS film also requires a post-treatment process to achieve the desired electronic conductivity. Herein, we report a hybrid nanocomposite buffer layer consisting of CdS and carbon black nanoparticles synthesized on a TiO2 film by a one-pot chemical bath deposition route. This method enables high electrical conductivity of the buffer layer with low roughness and n-type nature. Thus, devices based on the nanocomposite buffer layer improve the junction quality at the buffer layer/Sb2S3 interface, reducing the trap state recombination. As a result, the power conversion efficiency of the Sb2S3 solar cell increases from 4.95 to 6.03%. Such improvement demonstrates that using the nanocomposite buffer layer is a facile and efficient approach to reduce the need for a post-treatment process of CdS.

Abstract Image

用于硫化锑太阳能电池的 CdS-碳黑杂化纳米复合缓冲层†。
硫化锑(Sb2S3)的水热合成已成为制造 Sb2S3 太阳能电池的一种合适方法。传统上,CdS 薄膜是获得均匀和高质量 Sb2S3 薄膜的必要条件,这反过来又提高了 Sb2S3 器件的光电性能。然而,CdS 薄膜还需要经过后处理才能达到理想的电子导电性。在此,我们报告了一种混合纳米复合缓冲层,该缓冲层由 CdS 和炭黑纳米颗粒组成,采用一锅化学沉积法在 TiO2 薄膜上合成。这种方法使缓冲层具有高导电性、低粗糙度和 n 型特性。因此,基于纳米复合缓冲层的器件可提高缓冲层/Sb2S3 界面的结点质量,减少陷态重组。因此,Sb2S3 太阳能电池的功率转换效率从 4.95% 提高到 6.03%。这种改进表明,使用纳米复合缓冲层是减少对 CdS 后处理过程的需求的一种简便而有效的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信