Ran Wang, Teng Fu, Ya-Jie Yang, Xuan Song, Xiu-Li Wang, Yu-Zhong Wang
{"title":"Scientific Discovery Framework Accelerating Advanced Polymeric Materials Design.","authors":"Ran Wang, Teng Fu, Ya-Jie Yang, Xuan Song, Xiu-Li Wang, Yu-Zhong Wang","doi":"10.34133/research.0406","DOIUrl":null,"url":null,"abstract":"<p><p>Organic polymer materials, as the most abundantly produced materials, possess a flammable nature, making them potential hazards to human casualties and property losses. Target polymer design is still hindered due to the lack of a scientific foundation. Herein, we present a robust, generalizable, yet intelligent polymer discovery framework, which synergizes diverse capabilities, including the in situ burning analyzer, virtual reaction generator, and material genomic model, to achieve results that surpass the sum of individual parts. Notably, the high-throughput analyzer created for the first time, grounded in multiple spectroscopic principles, enables in situ capturing of massive combustion intermediates; then, the created realistic apparatus transforming to the virtual reaction generator acquires exponentially more intermediate information; further, the proposed feature engineering tool, which embedded both polymer hierarchical structures and massive intermediate data, develops the generalizable genomic model with excellent universality (adapting over 20 kinds of polymers) and high accuracy (88.8%), succeeding discovering series of novel polymers. This emerging approach addresses the target polymer design for flame-retardant application and underscores a pivotal role in accelerating polymeric materials discovery.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11228074/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Biology","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.34133/research.0406","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Organic polymer materials, as the most abundantly produced materials, possess a flammable nature, making them potential hazards to human casualties and property losses. Target polymer design is still hindered due to the lack of a scientific foundation. Herein, we present a robust, generalizable, yet intelligent polymer discovery framework, which synergizes diverse capabilities, including the in situ burning analyzer, virtual reaction generator, and material genomic model, to achieve results that surpass the sum of individual parts. Notably, the high-throughput analyzer created for the first time, grounded in multiple spectroscopic principles, enables in situ capturing of massive combustion intermediates; then, the created realistic apparatus transforming to the virtual reaction generator acquires exponentially more intermediate information; further, the proposed feature engineering tool, which embedded both polymer hierarchical structures and massive intermediate data, develops the generalizable genomic model with excellent universality (adapting over 20 kinds of polymers) and high accuracy (88.8%), succeeding discovering series of novel polymers. This emerging approach addresses the target polymer design for flame-retardant application and underscores a pivotal role in accelerating polymeric materials discovery.
期刊介绍:
ACS Chemical Biology provides an international forum for the rapid communication of research that broadly embraces the interface between chemistry and biology.
The journal also serves as a forum to facilitate the communication between biologists and chemists that will translate into new research opportunities and discoveries. Results will be published in which molecular reasoning has been used to probe questions through in vitro investigations, cell biological methods, or organismic studies.
We welcome mechanistic studies on proteins, nucleic acids, sugars, lipids, and nonbiological polymers. The journal serves a large scientific community, exploring cellular function from both chemical and biological perspectives. It is understood that submitted work is based upon original results and has not been published previously.