Ran Wang, Teng Fu, Ya-Jie Yang, Xuan Song, Xiu-Li Wang, Yu-Zhong Wang
{"title":"Scientific Discovery Framework Accelerating Advanced Polymeric Materials Design.","authors":"Ran Wang, Teng Fu, Ya-Jie Yang, Xuan Song, Xiu-Li Wang, Yu-Zhong Wang","doi":"10.34133/research.0406","DOIUrl":null,"url":null,"abstract":"<p><p>Organic polymer materials, as the most abundantly produced materials, possess a flammable nature, making them potential hazards to human casualties and property losses. Target polymer design is still hindered due to the lack of a scientific foundation. Herein, we present a robust, generalizable, yet intelligent polymer discovery framework, which synergizes diverse capabilities, including the in situ burning analyzer, virtual reaction generator, and material genomic model, to achieve results that surpass the sum of individual parts. Notably, the high-throughput analyzer created for the first time, grounded in multiple spectroscopic principles, enables in situ capturing of massive combustion intermediates; then, the created realistic apparatus transforming to the virtual reaction generator acquires exponentially more intermediate information; further, the proposed feature engineering tool, which embedded both polymer hierarchical structures and massive intermediate data, develops the generalizable genomic model with excellent universality (adapting over 20 kinds of polymers) and high accuracy (88.8%), succeeding discovering series of novel polymers. This emerging approach addresses the target polymer design for flame-retardant application and underscores a pivotal role in accelerating polymeric materials discovery.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"7 ","pages":"0406"},"PeriodicalIF":11.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11228074/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.34133/research.0406","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0
Abstract
Organic polymer materials, as the most abundantly produced materials, possess a flammable nature, making them potential hazards to human casualties and property losses. Target polymer design is still hindered due to the lack of a scientific foundation. Herein, we present a robust, generalizable, yet intelligent polymer discovery framework, which synergizes diverse capabilities, including the in situ burning analyzer, virtual reaction generator, and material genomic model, to achieve results that surpass the sum of individual parts. Notably, the high-throughput analyzer created for the first time, grounded in multiple spectroscopic principles, enables in situ capturing of massive combustion intermediates; then, the created realistic apparatus transforming to the virtual reaction generator acquires exponentially more intermediate information; further, the proposed feature engineering tool, which embedded both polymer hierarchical structures and massive intermediate data, develops the generalizable genomic model with excellent universality (adapting over 20 kinds of polymers) and high accuracy (88.8%), succeeding discovering series of novel polymers. This emerging approach addresses the target polymer design for flame-retardant application and underscores a pivotal role in accelerating polymeric materials discovery.
期刊介绍:
Research serves as a global platform for academic exchange, collaboration, and technological advancements. This journal welcomes high-quality research contributions from any domain, with open arms to authors from around the globe.
Comprising fundamental research in the life and physical sciences, Research also highlights significant findings and issues in engineering and applied science. The journal proudly features original research articles, reviews, perspectives, and editorials, fostering a diverse and dynamic scholarly environment.