Development and evaluation of a deep neural network model for orthokeratology lens fitting.

IF 2.8 3区 医学 Q1 OPHTHALMOLOGY
Ophthalmic and Physiological Optics Pub Date : 2024-09-01 Epub Date: 2024-07-09 DOI:10.1111/opo.13360
Hsiu-Wan Wendy Yang, Chih-Kai Leon Liang, Shih-Chi Chou, Hsin-Hui Wang, Huihua Kenny Chiang
{"title":"Development and evaluation of a deep neural network model for orthokeratology lens fitting.","authors":"Hsiu-Wan Wendy Yang, Chih-Kai Leon Liang, Shih-Chi Chou, Hsin-Hui Wang, Huihua Kenny Chiang","doi":"10.1111/opo.13360","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To optimise the precision and efficacy of orthokeratology, this investigation evaluated a deep neural network (DNN) model for lens fitting. The objective was to refine the standardisation of fitting procedures and curtail subjective evaluations, thereby augmenting patient safety in the context of increasing global myopia.</p><p><strong>Methods: </strong>A retrospective study of successful orthokeratology treatment was conducted on 266 patients, with 449 eyes being analysed. A DNN model with an 80%-20% training-validation split predicted lens parameters (curvature, power and diameter) using corneal topography and refractive indices. The model featured two hidden layers for precision.</p><p><strong>Results: </strong>The DNN model achieved mean absolute errors of 0.21 D for alignment curvature (AC), 0.19 D for target power (TP) and 0.02 mm for lens diameter (LD), with R<sup>2</sup> values of 0.97, 0.95 and 0.91, respectively. Accuracy decreased for myopia of less than 1.00 D, astigmatism exceeding 2.00 D and corneal curvatures >45.00 D. Approximately, 2% of cases with unique physiological characteristics showed notable prediction variances.</p><p><strong>Conclusion: </strong>While exhibiting high accuracy, the DNN model's limitations in specifying myopia, cylinder power and corneal curvature cases highlight the need for algorithmic refinement and clinical validation in orthokeratology practice.</p>","PeriodicalId":19522,"journal":{"name":"Ophthalmic and Physiological Optics","volume":" ","pages":"1224-1236"},"PeriodicalIF":2.8000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ophthalmic and Physiological Optics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/opo.13360","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: To optimise the precision and efficacy of orthokeratology, this investigation evaluated a deep neural network (DNN) model for lens fitting. The objective was to refine the standardisation of fitting procedures and curtail subjective evaluations, thereby augmenting patient safety in the context of increasing global myopia.

Methods: A retrospective study of successful orthokeratology treatment was conducted on 266 patients, with 449 eyes being analysed. A DNN model with an 80%-20% training-validation split predicted lens parameters (curvature, power and diameter) using corneal topography and refractive indices. The model featured two hidden layers for precision.

Results: The DNN model achieved mean absolute errors of 0.21 D for alignment curvature (AC), 0.19 D for target power (TP) and 0.02 mm for lens diameter (LD), with R2 values of 0.97, 0.95 and 0.91, respectively. Accuracy decreased for myopia of less than 1.00 D, astigmatism exceeding 2.00 D and corneal curvatures >45.00 D. Approximately, 2% of cases with unique physiological characteristics showed notable prediction variances.

Conclusion: While exhibiting high accuracy, the DNN model's limitations in specifying myopia, cylinder power and corneal curvature cases highlight the need for algorithmic refinement and clinical validation in orthokeratology practice.

开发和评估用于角膜矫形镜验配的深度神经网络模型。
目的:为了优化角膜矫形术的精度和疗效,本研究评估了用于镜片验配的深度神经网络(DNN)模型。目的是完善验配程序的标准化,减少主观评价,从而在全球近视度数不断增加的情况下提高患者的安全性:方法:对 266 名患者的成功角膜矫形治疗进行了回顾性研究,共分析了 449 只眼睛。利用角膜地形图和屈光指数,采用训练-验证比例为 80%-20% 的 DNN 模型预测晶状体参数(曲率、功率和直径)。该模型有两个隐藏层,以确保精确度:DNN 模型的对准曲率(AC)平均绝对误差为 0.21 D,目标功率(TP)平均绝对误差为 0.19 D,晶状体直径(LD)平均绝对误差为 0.02 mm,R2 值分别为 0.97、0.95 和 0.91。近视度数小于 1.00 D、散光度数超过 2.00 D 和角膜曲率大于 45.00 D 时,准确度会下降:尽管 DNN 模型表现出很高的准确性,但它在预测近视、角膜屈光度数和角膜曲率方面的局限性突出表明,在角膜矫形实践中需要对算法进行改进和临床验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.10
自引率
13.80%
发文量
135
审稿时长
6-12 weeks
期刊介绍: Ophthalmic & Physiological Optics, first published in 1925, is a leading international interdisciplinary journal that addresses basic and applied questions pertinent to contemporary research in vision science and optometry. OPO publishes original research papers, technical notes, reviews and letters and will interest researchers, educators and clinicians concerned with the development, use and restoration of vision.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信