Impact of fish oil supplementation on plasma levels of highly unsaturated fatty acid-containing lipid classes and molecular species in American football athletes.
Veronica Anne Mullins, Justin M Snider, Bryce Michael, Lydia Rose Porter, Roberta Diaz Brinton, Floyd H Chilton
{"title":"Impact of fish oil supplementation on plasma levels of highly unsaturated fatty acid-containing lipid classes and molecular species in American football athletes.","authors":"Veronica Anne Mullins, Justin M Snider, Bryce Michael, Lydia Rose Porter, Roberta Diaz Brinton, Floyd H Chilton","doi":"10.1186/s12986-024-00815-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Previous studies have linked sports-related concussions and repeated subconcussive head impacts in contact sport athletes to elevated brain injury biomarkers. Docosahexaenoic acid (DHA), the primary omega-3 (n-3) highly unsaturated fatty acid (HUFA) in the brain, has shown neuroprotective effects in animal models after brain injury, but clinical research has shown mixed results.</p><p><strong>Methods: </strong>We conducted a randomized, double-blind, placebo-controlled study on 29 Division 1 collegiate American football players, exploring the impact of DHA (2.5 g) and eicosapentaenoic acid (EPA) (1.0 g) supplied as ethyl esters, on levels of plasma lipids shown to cross the blood-brain barrier. Dietary intake data was collected using food frequency questionnaires (FFQ). Complex lipids and unesterified fatty acids were isolated from plasma, separated via reversed-phase liquid chromatography and analyzed by targeted lipidomics analysis.</p><p><strong>Results: </strong>FFQ results indicated that participants had low dietary n-3 HUFA intake and high omega-6 (n-6):n-3 polyunsaturated fatty acids (PUFA) and HUFA ratios at baseline. After DHA + EPA supplementation, plasma lysophosphatidylcholine (LPC) containing DHA and EPA significantly increased at all timepoints (weeks 17, 21, and 26; p < 0.0001), surpassing placebo at Weeks 17 (p < 0.05) and 21 (p < 0.05). Phosphatidylcholine (PC) molecular species containing DHA or EPA, PC38:6 PC36:6, PC38:7, PC40:6, and PC40:8, increased significantly in the DHA + EPA treatment group at Weeks 17 (and 21. Plasma concentrations of non-esterified DHA and EPA rose post-supplementation in Weeks 17 and 21.</p><p><strong>Conclusions: </strong>This study demonstrates that n-3 HUFA supplementation, in the form of ethyl esters, increased the DHA and EPA containing plasma lipid pools the have the capacity to enrich brain lipids and the potential to mitigate the effects of sports-related concussions and repeated subconcussive head impacts.</p><p><strong>Trial registration: </strong>All deidentified data are available at ClinicalTrials.gov #NCT0479207.</p>","PeriodicalId":19196,"journal":{"name":"Nutrition & Metabolism","volume":"21 1","pages":"43"},"PeriodicalIF":3.9000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11232345/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nutrition & Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12986-024-00815-x","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Previous studies have linked sports-related concussions and repeated subconcussive head impacts in contact sport athletes to elevated brain injury biomarkers. Docosahexaenoic acid (DHA), the primary omega-3 (n-3) highly unsaturated fatty acid (HUFA) in the brain, has shown neuroprotective effects in animal models after brain injury, but clinical research has shown mixed results.
Methods: We conducted a randomized, double-blind, placebo-controlled study on 29 Division 1 collegiate American football players, exploring the impact of DHA (2.5 g) and eicosapentaenoic acid (EPA) (1.0 g) supplied as ethyl esters, on levels of plasma lipids shown to cross the blood-brain barrier. Dietary intake data was collected using food frequency questionnaires (FFQ). Complex lipids and unesterified fatty acids were isolated from plasma, separated via reversed-phase liquid chromatography and analyzed by targeted lipidomics analysis.
Results: FFQ results indicated that participants had low dietary n-3 HUFA intake and high omega-6 (n-6):n-3 polyunsaturated fatty acids (PUFA) and HUFA ratios at baseline. After DHA + EPA supplementation, plasma lysophosphatidylcholine (LPC) containing DHA and EPA significantly increased at all timepoints (weeks 17, 21, and 26; p < 0.0001), surpassing placebo at Weeks 17 (p < 0.05) and 21 (p < 0.05). Phosphatidylcholine (PC) molecular species containing DHA or EPA, PC38:6 PC36:6, PC38:7, PC40:6, and PC40:8, increased significantly in the DHA + EPA treatment group at Weeks 17 (and 21. Plasma concentrations of non-esterified DHA and EPA rose post-supplementation in Weeks 17 and 21.
Conclusions: This study demonstrates that n-3 HUFA supplementation, in the form of ethyl esters, increased the DHA and EPA containing plasma lipid pools the have the capacity to enrich brain lipids and the potential to mitigate the effects of sports-related concussions and repeated subconcussive head impacts.
Trial registration: All deidentified data are available at ClinicalTrials.gov #NCT0479207.
期刊介绍:
Nutrition & Metabolism publishes studies with a clear focus on nutrition and metabolism with applications ranging from nutrition needs, exercise physiology, clinical and population studies, as well as the underlying mechanisms in these aspects.
The areas of interest for Nutrition & Metabolism encompass studies in molecular nutrition in the context of obesity, diabetes, lipedemias, metabolic syndrome and exercise physiology. Manuscripts related to molecular, cellular and human metabolism, nutrient sensing and nutrient–gene interactions are also in interest, as are submissions that have employed new and innovative strategies like metabolomics/lipidomics or other omic-based biomarkers to predict nutritional status and metabolic diseases.
Key areas we wish to encourage submissions from include:
-how diet and specific nutrients interact with genes, proteins or metabolites to influence metabolic phenotypes and disease outcomes;
-the role of epigenetic factors and the microbiome in the pathogenesis of metabolic diseases and their influence on metabolic responses to diet and food components;
-how diet and other environmental factors affect epigenetics and microbiota; the extent to which genetic and nongenetic factors modify personal metabolic responses to diet and food compositions and the mechanisms involved;
-how specific biologic networks and nutrient sensing mechanisms attribute to metabolic variability.