João Marcos Carvalho-Silva, Ana Beatriz Vilela Teixeira, Marco Antônio Schiavon, Andréa Cândido Dos Reis
{"title":"Antimicrobial gel with silver vanadate and silver nanoparticles: antifungal and physicochemical evaluation.","authors":"João Marcos Carvalho-Silva, Ana Beatriz Vilela Teixeira, Marco Antônio Schiavon, Andréa Cândido Dos Reis","doi":"10.1080/17460913.2024.2366630","DOIUrl":null,"url":null,"abstract":"<p><p><b>Aim:</b> To develop a β-AgVO<sub>3</sub> gel and evaluate its physicochemical stability and antifungal activity against <i>Candida albicans</i>. <b>Materials & methods:</b> The gel was prepared from the minimum inhibitory concentration (MIC) of β-AgVO<sub>3</sub>. The physicochemical stability was evaluated by centrifugation, accelerated stability (AS), storage (St), pH, syringability, viscosity and spreadability tests and antifungal activity by the agar diffusion. <b>Results:</b> The MIC was 62.5 μg/ml. After centrifugation, AS and St gels showed physicochemical stability. Lower viscosity and higher spreadability were observed for the higher β-AgVO<sub>3</sub> concentration and the minimum force for extrusion was similar for all groups. Antifungal effect was observed only for the β-AgVO<sub>3</sub> gel with 20xMIC. <b>Conclusion:</b> The β-AgVO<sub>3</sub> gel showed physicochemical stability and antifungal activity.</p>","PeriodicalId":12773,"journal":{"name":"Future microbiology","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/17460913.2024.2366630","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Aim: To develop a β-AgVO3 gel and evaluate its physicochemical stability and antifungal activity against Candida albicans. Materials & methods: The gel was prepared from the minimum inhibitory concentration (MIC) of β-AgVO3. The physicochemical stability was evaluated by centrifugation, accelerated stability (AS), storage (St), pH, syringability, viscosity and spreadability tests and antifungal activity by the agar diffusion. Results: The MIC was 62.5 μg/ml. After centrifugation, AS and St gels showed physicochemical stability. Lower viscosity and higher spreadability were observed for the higher β-AgVO3 concentration and the minimum force for extrusion was similar for all groups. Antifungal effect was observed only for the β-AgVO3 gel with 20xMIC. Conclusion: The β-AgVO3 gel showed physicochemical stability and antifungal activity.
期刊介绍:
Future Microbiology delivers essential information in concise, at-a-glance article formats. Key advances in the field are reported and analyzed by international experts, providing an authoritative but accessible forum for this increasingly important and vast area of research.