The effect of polycarboxylate superplasticizer on the strength and hydration performance of alkali slag building materials.

IF 1.8 4区 化学 Q3 POLYMER SCIENCE
Designed Monomers and Polymers Pub Date : 2024-07-06 eCollection Date: 2024-01-01 DOI:10.1080/15685551.2024.2376780
Guide Liu, Xin Zheng, Guoliang Xie, Gongliang Liu
{"title":"The effect of polycarboxylate superplasticizer on the strength and hydration performance of alkali slag building materials.","authors":"Guide Liu, Xin Zheng, Guoliang Xie, Gongliang Liu","doi":"10.1080/15685551.2024.2376780","DOIUrl":null,"url":null,"abstract":"<p><p>To explore the effect of polycarboxylate superplasticizers on the strength and hydration performance of alkali slag building materials, this study prepared cross-linked polycarboxylate superplasticizers with different ratios of hydrogen peroxide, methyl allyl alcohol polyoxyethylene ether, acrylic acid, polyethylene glycol diacrylate, monomer aqueous solution, reducing agent, chain transfer agent, etc. according to certain ratios, and tested their effects on the hydration performance and strength of alkali slag building materials. Through experimental analysis, it was found that the higher the proportion of cross-linked polycarboxylate based high-efficiency water-reducing agents, the lower the initial flowability of building material slurry; The addition of cross-linked polycarboxylate water-reducing agent will prolong the initial and final setting time of alkali slag building materials, delaying the hydration time of building materials; Cross linked polycarboxylate superplasticizers can reduce the electrical conductivity of alkali slag building material slurry, delaying its hydration rate; Different ratios of water-reducing agents have a significant impact on the water reduction rate of alkali slag building materials, with V2 water-reducing agent having the highest water-reduction rate of 28.6%; Cross linked polycarboxylate superplasticizers can increase the flexural and compressive strength of alkali slag building materials. Therefore, cross-linked polycarboxylate water-reducing agents have shown great potential in regulating the properties of alkali slag building materials.</p>","PeriodicalId":11170,"journal":{"name":"Designed Monomers and Polymers","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11229711/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Designed Monomers and Polymers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/15685551.2024.2376780","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

To explore the effect of polycarboxylate superplasticizers on the strength and hydration performance of alkali slag building materials, this study prepared cross-linked polycarboxylate superplasticizers with different ratios of hydrogen peroxide, methyl allyl alcohol polyoxyethylene ether, acrylic acid, polyethylene glycol diacrylate, monomer aqueous solution, reducing agent, chain transfer agent, etc. according to certain ratios, and tested their effects on the hydration performance and strength of alkali slag building materials. Through experimental analysis, it was found that the higher the proportion of cross-linked polycarboxylate based high-efficiency water-reducing agents, the lower the initial flowability of building material slurry; The addition of cross-linked polycarboxylate water-reducing agent will prolong the initial and final setting time of alkali slag building materials, delaying the hydration time of building materials; Cross linked polycarboxylate superplasticizers can reduce the electrical conductivity of alkali slag building material slurry, delaying its hydration rate; Different ratios of water-reducing agents have a significant impact on the water reduction rate of alkali slag building materials, with V2 water-reducing agent having the highest water-reduction rate of 28.6%; Cross linked polycarboxylate superplasticizers can increase the flexural and compressive strength of alkali slag building materials. Therefore, cross-linked polycarboxylate water-reducing agents have shown great potential in regulating the properties of alkali slag building materials.

聚羧酸盐超塑化剂对碱渣建材强度和水化性能的影响。
为探讨聚羧酸系超塑化剂对碱渣建材强度和水化性能的影响,本研究将过氧化氢、甲基烯丙基醇聚氧乙烯醚、丙烯酸、聚乙二醇二丙烯酸酯、单体水溶液、减水剂、链转移剂等按一定比例配制成交联聚羧酸系超塑化剂,并测试了其对碱渣建材水化性能和强度的影响。通过实验分析发现,交联聚羧酸系高效减水剂的配比越高,建材浆体的初始流动性越低;交联聚羧酸系减水剂的加入会延长碱渣建材的初凝和终凝时间,延缓建材的水化时间;交联聚羧酸盐超塑化剂可降低碱渣建材浆体的导电性,延缓其水化速度;不同配比的减水剂对碱渣建材的减水率有显著影响,其中V2减水剂的减水率最高,为28.6%;交联聚羧酸盐超塑化剂可提高碱渣建材的抗折和抗压强度。因此,交联聚羧酸盐减水剂在调节碱渣建筑材料性能方面显示出巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Designed Monomers and Polymers
Designed Monomers and Polymers 化学-高分子科学
CiteScore
3.30
自引率
0.00%
发文量
28
审稿时长
2.1 months
期刊介绍: Designed Monomers and Polymers ( DMP) publishes prompt peer-reviewed papers and short topical reviews on all areas of macromolecular design and applications. Emphasis is placed on the preparations of new monomers, including characterization and applications. Experiments should be presented in sufficient detail (including specific observations, precautionary notes, use of new materials, techniques, and their possible problems) that they could be reproduced by any researcher wishing to repeat the work. The journal also includes macromolecular design of polymeric materials (such as polymeric biomaterials, biomedical polymers, etc.) with medical applications. DMP provides an interface between organic and polymer chemistries and aims to bridge the gap between monomer synthesis and the design of new polymers. Submssions are invited in the areas including, but not limited to: -macromolecular science, initiators, macroinitiators for macromolecular design -kinetics, mechanism and modelling aspects of polymerization -new methods of synthesis of known monomers -new monomers (must show evidence for polymerization, e.g. polycondensation, sequential combination, oxidative coupling, radiation, plasma polymerization) -functional prepolymers of various architectures such as hyperbranched polymers, telechelic polymers, macromonomers, or dendrimers -new polymeric materials with biomedical applications
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信