Synergistic effects of thermosensitive liposomal doxorubicin, mild hyperthermia, and radiotherapy in breast cancer management: an orthotopic mouse model study.
{"title":"Synergistic effects of thermosensitive liposomal doxorubicin, mild hyperthermia, and radiotherapy in breast cancer management: an orthotopic mouse model study.","authors":"Xuehan Wang, Christine Allen","doi":"10.1007/s13346-024-01654-2","DOIUrl":null,"url":null,"abstract":"<p><p>Liposome formulations of the cancer drug doxorubicin have been developed to address the severe side effects that result from administration of this drug in a conventional formulation. Among them, thermosensitive liposomal doxorubicin presents enhanced tumor targeting and efficient drug release when combined with mild hyperthermia localized to the tumor site. Exploiting the radiosensitizing benefits of localized thermal therapy, the integration of radiation therapy with the thermally activated liposomal system is posited to amplify the anti-tumor efficacy. This study explored a synergistic therapeutic strategy that combines thermosensitive liposomal doxorubicin, mild hyperthermia, and radiotherapy, using an orthotopic murine model of breast cancer. The protocol of sequential multi-modal treatment, incorporating low-dose chemotherapy and radiotherapy, substantially postponed the progression of primary tumor growth in comparison to the application of monotherapy at elevated dosages. Improvements in unheated distant lesions were also observed. Furthermore, the toxicity associated with the combination treatment was comparable to that of either thermosensitive liposome treatment or radiation alone at low doses. These outcomes underscore the potential of multi-modal therapeutic strategies to refine treatment efficacy while concurrently diminishing adverse effects in the management of breast cancer, providing valuable insight for the future refinement of thermosensitive liposomal doxorubicin applications.</p>","PeriodicalId":11357,"journal":{"name":"Drug Delivery and Translational Research","volume":" ","pages":"1011-1022"},"PeriodicalIF":5.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Delivery and Translational Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13346-024-01654-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Liposome formulations of the cancer drug doxorubicin have been developed to address the severe side effects that result from administration of this drug in a conventional formulation. Among them, thermosensitive liposomal doxorubicin presents enhanced tumor targeting and efficient drug release when combined with mild hyperthermia localized to the tumor site. Exploiting the radiosensitizing benefits of localized thermal therapy, the integration of radiation therapy with the thermally activated liposomal system is posited to amplify the anti-tumor efficacy. This study explored a synergistic therapeutic strategy that combines thermosensitive liposomal doxorubicin, mild hyperthermia, and radiotherapy, using an orthotopic murine model of breast cancer. The protocol of sequential multi-modal treatment, incorporating low-dose chemotherapy and radiotherapy, substantially postponed the progression of primary tumor growth in comparison to the application of monotherapy at elevated dosages. Improvements in unheated distant lesions were also observed. Furthermore, the toxicity associated with the combination treatment was comparable to that of either thermosensitive liposome treatment or radiation alone at low doses. These outcomes underscore the potential of multi-modal therapeutic strategies to refine treatment efficacy while concurrently diminishing adverse effects in the management of breast cancer, providing valuable insight for the future refinement of thermosensitive liposomal doxorubicin applications.
期刊介绍:
The journal provides a unique forum for scientific publication of high-quality research that is exclusively focused on translational aspects of drug delivery. Rationally developed, effective delivery systems can potentially affect clinical outcome in different disease conditions.
Research focused on the following areas of translational drug delivery research will be considered for publication in the journal.
Designing and developing novel drug delivery systems, with a focus on their application to disease conditions;
Preclinical and clinical data related to drug delivery systems;
Drug distribution, pharmacokinetics, clearance, with drug delivery systems as compared to traditional dosing to demonstrate beneficial outcomes
Short-term and long-term biocompatibility of drug delivery systems, host response;
Biomaterials with growth factors for stem-cell differentiation in regenerative medicine and tissue engineering;
Image-guided drug therapy,
Nanomedicine;
Devices for drug delivery and drug/device combination products.
In addition to original full-length papers, communications, and reviews, the journal includes editorials, reports of future meetings, research highlights, and announcements pertaining to the activities of the Controlled Release Society.