Muscle Organoid and Assembloid Systems.

4区 医学 Q2 Biochemistry, Genetics and Molecular Biology
Hazar Eren Soydan, Ayşegül Doğan
{"title":"Muscle Organoid and Assembloid Systems.","authors":"Hazar Eren Soydan, Ayşegül Doğan","doi":"10.1007/5584_2024_816","DOIUrl":null,"url":null,"abstract":"<p><p>Skeletal muscle is one of the most complex and largest tissues that perform important processes in the body, including performing voluntary movements and maintaining body temperature. Disruption of muscle homeostasis results in the development of several disorders, including diabetes and sarcopenia. To study the developmental and regenerative dynamics of skeletal muscle and the mechanism behind muscle diseases, it is important to model skeletal muscle and diseases in vitro. Since skeletal muscle has a complex structure and interaction with other tissues and cells that are required to perform their function, conventional 2D cultures are not sufficient to model the skeletal muscle with their interactions. Advances in the field of organoids and assembloids will enable the establishment of more complex and realistic tissue or disease models which cannot be fully recapitulated in conventional 2D culture systems for use in several areas, including disease research, regenerative, and tissue biology. To overcome these limitations, 3D organoid systems and assembloid systems are promising because of their success in recapitulating the complex structural organization, function, and cellular interactions of skeletal muscle.</p>","PeriodicalId":7270,"journal":{"name":"Advances in experimental medicine and biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in experimental medicine and biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/5584_2024_816","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Skeletal muscle is one of the most complex and largest tissues that perform important processes in the body, including performing voluntary movements and maintaining body temperature. Disruption of muscle homeostasis results in the development of several disorders, including diabetes and sarcopenia. To study the developmental and regenerative dynamics of skeletal muscle and the mechanism behind muscle diseases, it is important to model skeletal muscle and diseases in vitro. Since skeletal muscle has a complex structure and interaction with other tissues and cells that are required to perform their function, conventional 2D cultures are not sufficient to model the skeletal muscle with their interactions. Advances in the field of organoids and assembloids will enable the establishment of more complex and realistic tissue or disease models which cannot be fully recapitulated in conventional 2D culture systems for use in several areas, including disease research, regenerative, and tissue biology. To overcome these limitations, 3D organoid systems and assembloid systems are promising because of their success in recapitulating the complex structural organization, function, and cellular interactions of skeletal muscle.

肌肉类器官和类器官系统
骨骼肌是人体最复杂、最大的组织之一,在体内执行重要的程序,包括进行自主运动和维持体温。肌肉平衡失调会导致多种疾病的发生,包括糖尿病和肌肉疏松症。要研究骨骼肌的发育和再生动力学以及肌肉疾病背后的机理,就必须在体外建立骨骼肌和疾病模型。由于骨骼肌结构复杂,并与其他组织和细胞相互作用以发挥其功能,传统的二维培养不足以建立骨骼肌及其相互作用的模型。器官组织和组装体领域的进步将有助于建立更复杂、更逼真的组织或疾病模型,这些模型无法在传统的二维培养系统中完全重现,可用于疾病研究、再生和组织生物学等多个领域。为了克服这些限制,三维类器官系统和拼装体系统在重现骨骼肌复杂的结构组织、功能和细胞相互作用方面取得了成功,因此前景广阔。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in experimental medicine and biology
Advances in experimental medicine and biology 医学-医学:研究与实验
CiteScore
5.90
自引率
0.00%
发文量
465
审稿时长
2-4 weeks
期刊介绍: Advances in Experimental Medicine and Biology provides a platform for scientific contributions in the main disciplines of the biomedicine and the life sciences. This series publishes thematic volumes on contemporary research in the areas of microbiology, immunology, neurosciences, biochemistry, biomedical engineering, genetics, physiology, and cancer research. Covering emerging topics and techniques in basic and clinical science, it brings together clinicians and researchers from various fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信