Milnor–Wood inequality for klt varieties of general type and uniformization

IF 0.8 3区 数学 Q2 MATHEMATICS
Matteo Costantini, Daniel Greb
{"title":"Milnor–Wood inequality for klt varieties of general type and uniformization","authors":"Matteo Costantini,&nbsp;Daniel Greb","doi":"10.1112/blms.13071","DOIUrl":null,"url":null,"abstract":"<p>We generalize the definition of the Toledo invariant for representations of fundamental groups of smooth varieties of general type due to Koziarz and Maubon to the context of singular klt varieties, where the natural fundamental groups to consider are those of smooth loci. Assuming that the rank of the target Lie group is not greater than two, we show that the Toledo invariant satisfies a Milnor–Wood-type inequality and we characterize the corresponding maximal representations.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 7","pages":"2552-2567"},"PeriodicalIF":0.8000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13071","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13071","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We generalize the definition of the Toledo invariant for representations of fundamental groups of smooth varieties of general type due to Koziarz and Maubon to the context of singular klt varieties, where the natural fundamental groups to consider are those of smooth loci. Assuming that the rank of the target Lie group is not greater than two, we show that the Toledo invariant satisfies a Milnor–Wood-type inequality and we characterize the corresponding maximal representations.

Abstract Image

一般类型 klt 变体的米尔诺-伍德不等式和均匀化
我们将科扎尔兹(Koziarz)和毛朋(Maubon)提出的一般类型光滑变种基本群的托莱多不变量的定义推广到奇异 klt 变种的背景中,这里要考虑的自然基本群是光滑位置的基本群。假设目标李群的秩不大于二,我们证明托莱多不变量满足米尔诺-伍德型不等式,并描述了相应的最大表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信