Shortest closed curve to contain a sphere in its convex hull

IF 0.8 3区 数学 Q2 MATHEMATICS
Mohammad Ghomi, James Wenk
{"title":"Shortest closed curve to contain a sphere in its convex hull","authors":"Mohammad Ghomi,&nbsp;James Wenk","doi":"10.1112/blms.13066","DOIUrl":null,"url":null,"abstract":"<p>We show that in Euclidean 3-space any closed curve which contains the unit sphere within its convex hull has length <span></span><math>\n <semantics>\n <mrow>\n <mi>L</mi>\n <mo>⩾</mo>\n <mn>4</mn>\n <mi>π</mi>\n </mrow>\n <annotation>$L\\geqslant 4\\pi$</annotation>\n </semantics></math>, and characterize the case of equality. This result generalizes the authors' recent solution to a conjecture of Zalgaller. Furthermore, for the analogous problem in <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math> dimensions, we include the estimate <span></span><math>\n <semantics>\n <mrow>\n <mi>L</mi>\n <mo>⩾</mo>\n <mi>C</mi>\n <mi>n</mi>\n <msqrt>\n <mi>n</mi>\n </msqrt>\n </mrow>\n <annotation>$L\\geqslant Cn\\sqrt {n}$</annotation>\n </semantics></math> by Nazarov, which is sharp up to the constant <span></span><math>\n <semantics>\n <mi>C</mi>\n <annotation>$C$</annotation>\n </semantics></math>.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 7","pages":"2472-2482"},"PeriodicalIF":0.8000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13066","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13066","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We show that in Euclidean 3-space any closed curve which contains the unit sphere within its convex hull has length L 4 π $L\geqslant 4\pi$ , and characterize the case of equality. This result generalizes the authors' recent solution to a conjecture of Zalgaller. Furthermore, for the analogous problem in n $n$ dimensions, we include the estimate L C n n $L\geqslant Cn\sqrt {n}$ by Nazarov, which is sharp up to the constant C $C$ .

Abstract Image

将球面包含在其凸面内的最短闭合曲线
我们证明了在欧几里得三维空间中,任何在其凸壳内包含单位球面的闭合曲线都有长度 L ⩾ 4 π $L\geqslant 4\pi$ ,并描述了相等情况的特征。这一结果概括了作者最近对扎尔加勒猜想的解答。此外,对于 n $n$ 维度的类似问题,我们包含了纳扎罗夫的估计 L ⩾ C n n $L\geqslant Cn\sqrt {n}$,它在常数 C $C$ 的范围内是尖锐的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信