Limits of conical Kähler–Einstein metrics on rank one horosymmetric spaces

IF 0.8 3区 数学 Q2 MATHEMATICS
Thibaut Delcroix
{"title":"Limits of conical Kähler–Einstein metrics on rank one horosymmetric spaces","authors":"Thibaut Delcroix","doi":"10.1112/blms.13069","DOIUrl":null,"url":null,"abstract":"<p>We consider families of conical Kähler–Einstein metrics on rank one horosymmetric Fano manifolds, with decreasing cone angles along a codimension one orbit. At the limit angle, which is positive, we show that the metrics, restricted to the complement of that orbit, converge to (the pull-back of) the Kähler–Einstein metric on the basis of the horosymmetric homogeneous space, which is a projective homogeneous space. Then we show that, on the symmetric space fibers, the rescaled metrics converge to Stenzel's Ricci flat Kähler metric.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 7","pages":"2514-2528"},"PeriodicalIF":0.8000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13069","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13069","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider families of conical Kähler–Einstein metrics on rank one horosymmetric Fano manifolds, with decreasing cone angles along a codimension one orbit. At the limit angle, which is positive, we show that the metrics, restricted to the complement of that orbit, converge to (the pull-back of) the Kähler–Einstein metric on the basis of the horosymmetric homogeneous space, which is a projective homogeneous space. Then we show that, on the symmetric space fibers, the rescaled metrics converge to Stenzel's Ricci flat Kähler metric.

一级角对称空间上的锥形凯勒-爱因斯坦度量的极限
我们考虑了秩为一的角对称法诺流形上的锥形凯勒-爱因斯坦度量族,其锥角沿标度为一的轨道递减。在极限角为正的情况下,我们证明了局限于该轨道补集的度量收敛于以角对称均质空间为基础的(凯勒-爱因斯坦度量的回拉),而角对称均质空间是一个投影均质空间。然后我们证明,在对称空间纤维上,重标度度量收敛于 Stenzel 的 Ricci 平面凯勒度量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信