David Berger, René L. Schilling, Eugene Shargorodsky
{"title":"The Liouville theorem for a class of Fourier multipliers and its connection to coupling","authors":"David Berger, René L. Schilling, Eugene Shargorodsky","doi":"10.1112/blms.13060","DOIUrl":null,"url":null,"abstract":"<p>The classical Liouville property says that all bounded harmonic functions in <span></span><math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <annotation>$\\mathbb {R}^n$</annotation>\n </semantics></math>, that is, all bounded functions satisfying <span></span><math>\n <semantics>\n <mrow>\n <mi>Δ</mi>\n <mi>f</mi>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$\\Delta f = 0$</annotation>\n </semantics></math>, are constant. In this paper, we obtain necessary and sufficient conditions on the symbol of a Fourier multiplier operator <span></span><math>\n <semantics>\n <mrow>\n <mi>m</mi>\n <mo>(</mo>\n <mi>D</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$m(D)$</annotation>\n </semantics></math>, such that the solutions <span></span><math>\n <semantics>\n <mi>f</mi>\n <annotation>$f$</annotation>\n </semantics></math> to <span></span><math>\n <semantics>\n <mrow>\n <mi>m</mi>\n <mo>(</mo>\n <mi>D</mi>\n <mo>)</mo>\n <mi>f</mi>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$m(D)f=0$</annotation>\n </semantics></math> are Lebesgue a.e. constant (if <span></span><math>\n <semantics>\n <mi>f</mi>\n <annotation>$f$</annotation>\n </semantics></math> is bounded) or coincide Lebesgue a.e. with a polynomial (if <span></span><math>\n <semantics>\n <mi>f</mi>\n <annotation>$f$</annotation>\n </semantics></math> is polynomially bounded). The class of Fourier multipliers includes the (in general non-local) generators of Lévy processes. For generators of Lévy processes, we obtain necessary and sufficient conditions for a strong Liouville theorem where <span></span><math>\n <semantics>\n <mi>f</mi>\n <annotation>$f$</annotation>\n </semantics></math> is positive and grows at most exponentially fast. As an application of our results above, we prove a coupling result for space-time Lévy processes.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 7","pages":"2374-2394"},"PeriodicalIF":0.8000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13060","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13060","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The classical Liouville property says that all bounded harmonic functions in , that is, all bounded functions satisfying , are constant. In this paper, we obtain necessary and sufficient conditions on the symbol of a Fourier multiplier operator , such that the solutions to are Lebesgue a.e. constant (if is bounded) or coincide Lebesgue a.e. with a polynomial (if is polynomially bounded). The class of Fourier multipliers includes the (in general non-local) generators of Lévy processes. For generators of Lévy processes, we obtain necessary and sufficient conditions for a strong Liouville theorem where is positive and grows at most exponentially fast. As an application of our results above, we prove a coupling result for space-time Lévy processes.
经典的柳维尔性质表明,R n $\mathbb {R}^n$ 中的所有有界谐函数,即满足 Δ f = 0 $\Delta f = 0$ 的所有有界函数,都是常数。在本文中,我们得到了傅立叶乘法器算子 m ( D ) $m(D)$ 符号的必要条件和充分条件,使得 m ( D ) f = 0 $m(D)f=0$ 的解 f $f$ 是 Lebesgue a.e. 常数(如果 f $f$ 是有界的)或与多项式重合 Lebesgue a.e. (如果 f $f$ 是多项式有界的)。傅里叶乘数类包括莱维过程的(一般非局部)生成器。对于莱维过程的生成器,我们得到了强李欧维尔定理的必要条件和充分条件,其中 f $f$ 为正值,且最多呈指数级快速增长。作为上述结果的应用,我们证明了时空李维过程的耦合结果。