On the length of nonsolutions to equations with constants in some linear groups

IF 0.8 3区 数学 Q2 MATHEMATICS
Henry Bradford, Jakob Schneider, Andreas Thom
{"title":"On the length of nonsolutions to equations with constants in some linear groups","authors":"Henry Bradford,&nbsp;Jakob Schneider,&nbsp;Andreas Thom","doi":"10.1112/blms.13058","DOIUrl":null,"url":null,"abstract":"<p>We show that for any finite-rank–free group <span></span><math>\n <semantics>\n <mi>Γ</mi>\n <annotation>$\\Gamma$</annotation>\n </semantics></math>, any word-equation in one variable of length <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math> with constants in <span></span><math>\n <semantics>\n <mi>Γ</mi>\n <annotation>$\\Gamma$</annotation>\n </semantics></math> fails to be satisfied by some element of <span></span><math>\n <semantics>\n <mi>Γ</mi>\n <annotation>$\\Gamma$</annotation>\n </semantics></math> of word-length <span></span><math>\n <semantics>\n <mrow>\n <mi>O</mi>\n <mo>(</mo>\n <mi>log</mi>\n <mo>(</mo>\n <mi>n</mi>\n <mo>)</mo>\n <mo>)</mo>\n </mrow>\n <annotation>$O(\\log (n))$</annotation>\n </semantics></math>. By a result of the first author, this logarithmic bound cannot be improved upon for any finitely generated group <span></span><math>\n <semantics>\n <mi>Γ</mi>\n <annotation>$\\Gamma$</annotation>\n </semantics></math>. Beyond free groups, our method (and the logarithmic bound) applies to a class of groups including <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mo>PSL</mo>\n <mi>d</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>Z</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\operatorname{PSL}_d(\\mathbb {Z})$</annotation>\n </semantics></math> for all <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>⩾</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$d \\geqslant 2$</annotation>\n </semantics></math>, and the fundamental groups of all closed hyperbolic surfaces and 3-manifolds. Finally, using a construction of Nekrashevych, we exhibit a finitely generated group <span></span><math>\n <semantics>\n <mi>Γ</mi>\n <annotation>$\\Gamma$</annotation>\n </semantics></math> and a sequence of word-equations  with constants in <span></span><math>\n <semantics>\n <mi>Γ</mi>\n <annotation>$\\Gamma$</annotation>\n </semantics></math> for which every nonsolution in <span></span><math>\n <semantics>\n <mi>Γ</mi>\n <annotation>$\\Gamma$</annotation>\n </semantics></math> is of word-length strictly greater than logarithmic.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 7","pages":"2338-2349"},"PeriodicalIF":0.8000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13058","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13058","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We show that for any finite-rank–free group Γ $\Gamma$ , any word-equation in one variable of length n $n$ with constants in Γ $\Gamma$ fails to be satisfied by some element of Γ $\Gamma$ of word-length O ( log ( n ) ) $O(\log (n))$ . By a result of the first author, this logarithmic bound cannot be improved upon for any finitely generated group Γ $\Gamma$ . Beyond free groups, our method (and the logarithmic bound) applies to a class of groups including PSL d ( Z ) $\operatorname{PSL}_d(\mathbb {Z})$ for all d 2 $d \geqslant 2$ , and the fundamental groups of all closed hyperbolic surfaces and 3-manifolds. Finally, using a construction of Nekrashevych, we exhibit a finitely generated group Γ $\Gamma$ and a sequence of word-equations  with constants in Γ $\Gamma$ for which every nonsolution in Γ $\Gamma$ is of word-length strictly greater than logarithmic.

论某些线性方程组中常量方程的无解长度
我们证明,对于任何有限无秩群 Γ $\Gamma$ 来说,任何长度为 n $n$ 且常数在 Γ $\Gamma$ 中的单变量字方程都不能被字长为 O ( log ( n ) ) $O(log(n))$的 Γ $\Gamma$ 的某个元素所满足。根据第一作者的一个结果,对于任何有限生成的群Γ $\Gamma$ 来说,这个对数约束是无法改进的。除了自由群之外,我们的方法(以及对数界值)还适用于一类群,包括所有 d ⩾ 2 $d \geqslant 2$ 的 PSL d ( Z ) $operatorname{PSL}_d(\mathbb {Z})$ ,以及所有封闭双曲面和 3-manifolds的基群。最后,利用内克拉舍维奇的一个构造,我们展示了一个有限生成的群Γ\ $Gamma$和一个在Γ\ $Gamma$中带有常数的字方程序列,对于这个序列,在Γ\ $Gamma$中的每一个非解的字长都严格大于对数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信