Equidistribution of high traces of random matrices over finite fields and cancellation in character sums of high conductor

IF 0.8 3区 数学 Q2 MATHEMATICS
Ofir Gorodetsky, Valeriya Kovaleva
{"title":"Equidistribution of high traces of random matrices over finite fields and cancellation in character sums of high conductor","authors":"Ofir Gorodetsky,&nbsp;Valeriya Kovaleva","doi":"10.1112/blms.13057","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>g</mi>\n <annotation>$g$</annotation>\n </semantics></math> be a random matrix distributed according to uniform probability measure on the finite general linear group <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>GL</mi>\n <mi>n</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>F</mi>\n <mi>q</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathrm{GL}_n(\\mathbb {F}_q)$</annotation>\n </semantics></math>. We show that <span></span><math>\n <semantics>\n <mrow>\n <mi>Tr</mi>\n <mo>(</mo>\n <msup>\n <mi>g</mi>\n <mi>k</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathrm{Tr}(g^k)$</annotation>\n </semantics></math> equidistributes on <span></span><math>\n <semantics>\n <msub>\n <mi>F</mi>\n <mi>q</mi>\n </msub>\n <annotation>$\\mathbb {F}_q$</annotation>\n </semantics></math> as <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>→</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$n \\rightarrow \\infty$</annotation>\n </semantics></math> as long as <span></span><math>\n <semantics>\n <mrow>\n <mi>log</mi>\n <mi>k</mi>\n <mo>=</mo>\n <mi>o</mi>\n <mo>(</mo>\n <msup>\n <mi>n</mi>\n <mn>2</mn>\n </msup>\n <mo>)</mo>\n </mrow>\n <annotation>$\\log k=o(n^2)$</annotation>\n </semantics></math> and that this range is sharp. We also show that nontrivial linear combinations of <span></span><math>\n <semantics>\n <mrow>\n <mi>Tr</mi>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>g</mi>\n <mn>1</mn>\n </msup>\n <mo>)</mo>\n </mrow>\n <mo>,</mo>\n <mtext>…</mtext>\n <mo>,</mo>\n <mi>Tr</mi>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>g</mi>\n <mi>k</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathrm{Tr}(g^1),\\ldots, \\mathrm{Tr}(g^k)$</annotation>\n </semantics></math> equidistribute as long as <span></span><math>\n <semantics>\n <mrow>\n <mi>log</mi>\n <mi>k</mi>\n <mo>=</mo>\n <mi>o</mi>\n <mo>(</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\log k =o(n)$</annotation>\n </semantics></math> and this range is sharp as well. Previously equidistribution of either a single trace or a linear combination of traces was only known for <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>⩽</mo>\n <msub>\n <mi>c</mi>\n <mi>q</mi>\n </msub>\n <mi>n</mi>\n </mrow>\n <annotation>$k \\leqslant c_q n$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <msub>\n <mi>c</mi>\n <mi>q</mi>\n </msub>\n <annotation>$c_q$</annotation>\n </semantics></math> depends on <span></span><math>\n <semantics>\n <mi>q</mi>\n <annotation>$q$</annotation>\n </semantics></math>, due to work of the first author and Rodgers. We reduce the problem to exhibiting cancellation in certain short character sums in function fields. For the equidistribution of <span></span><math>\n <semantics>\n <mrow>\n <mi>Tr</mi>\n <mo>(</mo>\n <msup>\n <mi>g</mi>\n <mi>k</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathrm{Tr}(g^k)$</annotation>\n </semantics></math>, we end up showing that certain <i>explicit</i> character sums modulo <span></span><math>\n <semantics>\n <msup>\n <mi>T</mi>\n <mrow>\n <mi>k</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <annotation>$T^{k+1}$</annotation>\n </semantics></math> exhibit cancellation when averaged over monic polynomials of degree <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math> in <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>F</mi>\n <mi>q</mi>\n </msub>\n <mrow>\n <mo>[</mo>\n <mi>T</mi>\n <mo>]</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathbb {F}_q[T]$</annotation>\n </semantics></math> as long as <span></span><math>\n <semantics>\n <mrow>\n <mi>log</mi>\n <mi>k</mi>\n <mo>=</mo>\n <mi>o</mi>\n <mo>(</mo>\n <msup>\n <mi>n</mi>\n <mn>2</mn>\n </msup>\n <mo>)</mo>\n </mrow>\n <annotation>$\\log k = o(n^2)$</annotation>\n </semantics></math>. This goes far beyond the classical range <span></span><math>\n <semantics>\n <mrow>\n <mi>log</mi>\n <mi>k</mi>\n <mo>=</mo>\n <mi>o</mi>\n <mo>(</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\log k =o(n)$</annotation>\n </semantics></math> due to Montgomery and Vaughan. To study these sums, we build on the argument of Montgomery and Vaughan but exploit additional symmetry present in the considered sums.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 7","pages":"2315-2337"},"PeriodicalIF":0.8000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13057","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13057","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let g $g$ be a random matrix distributed according to uniform probability measure on the finite general linear group GL n ( F q ) $\mathrm{GL}_n(\mathbb {F}_q)$ . We show that Tr ( g k ) $\mathrm{Tr}(g^k)$ equidistributes on F q $\mathbb {F}_q$ as n $n \rightarrow \infty$ as long as log k = o ( n 2 ) $\log k=o(n^2)$ and that this range is sharp. We also show that nontrivial linear combinations of Tr ( g 1 ) , , Tr ( g k ) $\mathrm{Tr}(g^1),\ldots, \mathrm{Tr}(g^k)$ equidistribute as long as log k = o ( n ) $\log k =o(n)$ and this range is sharp as well. Previously equidistribution of either a single trace or a linear combination of traces was only known for k c q n $k \leqslant c_q n$ , where c q $c_q$ depends on q $q$ , due to work of the first author and Rodgers. We reduce the problem to exhibiting cancellation in certain short character sums in function fields. For the equidistribution of Tr ( g k ) $\mathrm{Tr}(g^k)$ , we end up showing that certain explicit character sums modulo T k + 1 $T^{k+1}$ exhibit cancellation when averaged over monic polynomials of degree n $n$ in F q [ T ] $\mathbb {F}_q[T]$ as long as log k = o ( n 2 ) $\log k = o(n^2)$ . This goes far beyond the classical range log k = o ( n ) $\log k =o(n)$ due to Montgomery and Vaughan. To study these sums, we build on the argument of Montgomery and Vaughan but exploit additional symmetry present in the considered sums.

有限域上随机矩阵高迹的等分布与高导体特征和的消除
让 g $g$ 是一个在有限一般线性群 GL n ( F q ) $\mathrm{GL}_n(\mathbb {F}_q)$ 上按均匀概率分布的随机矩阵。我们证明,只要 log k = o ( n 2 ) $\log k=o(n^2)$ ,Tr ( g k ) $\mathrm{Tr}(g^k)$ 在 n →∞ $n \rightarrow \infty$ 时等分布于 F q $\mathbb {F}_q$ 上,并且这个范围是尖锐的。我们还证明,Tr ( g 1 ) , ... , Tr ( g k ) $\mathrm{Tr}(g^1),\ldots, \mathrm{Tr}(g^k)$只要 log k = o ( n ) $\log k =o(n)$就会等分布,而且这个范围也是尖锐的。在此之前,由于第一作者和罗杰斯的研究,单个迹线或迹线线性组合的等分布只适用于 k ⩽ c q n $k \leqslant c_q n$,其中 c q $c_q$ 取决于 q $q$。我们将问题简化为在函数场中的某些短字符和中显示取消。对于 Tr ( g k ) $\mathrm{Tr}(g^k)$ 的等差数列,我们最终证明,只要 log k = o ( n 2 ) $\log k = o(n^2)$ ,在对 F q [ T ] $\mathbb {F}_q[T]$ 中 n $n$ 阶的单项式求平均数时,某些显式特征和 modulo T k + 1 $T^{k+1}$ 会表现出取消。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信