Xiaobin Ge, Guangzhong Du, Qingchen Zhou, Bing Yan, Gonglei Yue
{"title":"TNNT1 accelerates migration, invasion and EMT progression in lung cancer cells.","authors":"Xiaobin Ge, Guangzhong Du, Qingchen Zhou, Bing Yan, Gonglei Yue","doi":"10.1111/1759-7714.15400","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Clinically, most patients with lung cancer (LC) die from tumor spread and metastasis. Specific metastasis-related molecules can provide reference for clinical prediction of efficacy, evaluation of prognosis, and search for the best treatment plan. Troponin T1 (TNNT1) is highly expressed in various cancer tissues, which affects malignant behavior of tumor cells and is related to patients' survival and prognosis. However, the role and molecular mechanism of TNNT1 in LC invasion and metastasis have not yet been investigated.</p><p><strong>Methods: </strong>Gene expression profiling interactive analysis (GEPIA) online analysis was used to analyze TNNT1 expression in LC tissues. Quantitative real-time-polymerase chain reaction (qRT-PCR) or western blot were performed to measure TNNT1 or epithelial-to-mesenchymal transition (EMT)-related and Wnt/β-catenin pathway-related protein expression in LC cells. After TNNT1 knockdown, cell scratch healing and transwell assays were introduced to assess cell migration and invasion, respectively.</p><p><strong>Results: </strong>TNNT1 expression in LC tissues and cells was increased. TNNT1 knockdown notably impaired LC cell migration, invasion and EMT. TNNT1 knockdown inhibited Wnt/β-catenin pathway of LC cells. Lithium chloride (LiCl) addition partially restored the inhibition of TNNT1 knockdown on migration, invasion, EMT and Wnt/β-catenin of LC cells.</p><p><strong>Conclusion: </strong>TNNT1 knockdown attenuated LC migration, invasion and EMT, possibly through Wnt/β-catenin signaling.</p>","PeriodicalId":23338,"journal":{"name":"Thoracic Cancer","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11320084/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thoracic Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/1759-7714.15400","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/7 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Clinically, most patients with lung cancer (LC) die from tumor spread and metastasis. Specific metastasis-related molecules can provide reference for clinical prediction of efficacy, evaluation of prognosis, and search for the best treatment plan. Troponin T1 (TNNT1) is highly expressed in various cancer tissues, which affects malignant behavior of tumor cells and is related to patients' survival and prognosis. However, the role and molecular mechanism of TNNT1 in LC invasion and metastasis have not yet been investigated.
Methods: Gene expression profiling interactive analysis (GEPIA) online analysis was used to analyze TNNT1 expression in LC tissues. Quantitative real-time-polymerase chain reaction (qRT-PCR) or western blot were performed to measure TNNT1 or epithelial-to-mesenchymal transition (EMT)-related and Wnt/β-catenin pathway-related protein expression in LC cells. After TNNT1 knockdown, cell scratch healing and transwell assays were introduced to assess cell migration and invasion, respectively.
Results: TNNT1 expression in LC tissues and cells was increased. TNNT1 knockdown notably impaired LC cell migration, invasion and EMT. TNNT1 knockdown inhibited Wnt/β-catenin pathway of LC cells. Lithium chloride (LiCl) addition partially restored the inhibition of TNNT1 knockdown on migration, invasion, EMT and Wnt/β-catenin of LC cells.
Conclusion: TNNT1 knockdown attenuated LC migration, invasion and EMT, possibly through Wnt/β-catenin signaling.
期刊介绍:
Thoracic Cancer aims to facilitate international collaboration and exchange of comprehensive and cutting-edge information on basic, translational, and applied clinical research in lung cancer, esophageal cancer, mediastinal cancer, breast cancer and other thoracic malignancies. Prevention, treatment and research relevant to Asia-Pacific is a focus area, but submissions from all regions are welcomed. The editors encourage contributions relevant to prevention, general thoracic surgery, medical oncology, radiology, radiation medicine, pathology, basic cancer research, as well as epidemiological and translational studies in thoracic cancer. Thoracic Cancer is the official publication of the Chinese Society of Lung Cancer, International Chinese Society of Thoracic Surgery and is endorsed by the Korean Association for the Study of Lung Cancer and the Hong Kong Cancer Therapy Society.
The Journal publishes a range of article types including: Editorials, Invited Reviews, Mini Reviews, Original Articles, Clinical Guidelines, Technological Notes, Imaging in thoracic cancer, Meeting Reports, Case Reports, Letters to the Editor, Commentaries, and Brief Reports.