{"title":"Neonatal Diazepam Exposure Decreases Dendritic Arborization and Spine Density of Cortical Pyramidal Neurons in Rats.","authors":"Meetu Wadhwa, Jeffrey W Sall, Gregory A Chinn","doi":"10.1097/ANA.0000000000000979","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Benzodiazepines are extensively utilized in pediatric anesthesia and critical care for their anxiolytic and sedative properties. However, preclinical studies indicate that neonatal exposure to GABAergic drugs, including benzodiazepines, leads to long-term cognitive deficits, potentially mediated by altered GABAergic signaling during brain development. This preclinical study investigated the impact of early-life diazepam exposure on cortical neuronal morphology, specifically exploring dendritic arborization and spine density, crucial factors in synaptogenesis.</p><p><strong>Methods: </strong>Male and female Sprague Dawley rat pups were exposed to a single neonatal dose of diazepam (30 mg/kg) or vehicle on postnatal day (PND) 7. Golgi-Cox staining was used to assess cortical pyramidal neuron development at 4 developmental stages: neonatal (PND8), infantile (PND15), juvenile (PND30), and adolescence (PND42). Animals were randomized equally to 4 groups: male-vehicle, male-diazepam, female-vehicle, and female-diazepam. Neuronal morphology was evaluated after reconstruction in neurolucida, and dendritic spine density was analyzed through high-power photomicrographs using ImageJ.</p><p><strong>Results: </strong>Diazepam exposure resulted in decreased dendritic complexity in both sexes, with reduced arborization and spine density observed in cortical pyramidal neurons. Significant differences were found at each developmental stage, indicating a persistent impact. Dendritic length increased with age but was attenuated by diazepam exposure. Branching length analysis revealed decreased complexity after diazepam treatment. Spine density at PND42 was significantly reduced in both apical and basal dendrites after diazepam exposure.</p><p><strong>Conclusions: </strong>Neonatal diazepam exposure adversely affected cortical pyramidal neuron development, leading to persistent alterations in dendritic arborization and spine density. These structural changes suggest potential risks associated with early-life diazepam exposure. Further research is needed to unravel the functional consequences of these anatomic alterations.</p>","PeriodicalId":16550,"journal":{"name":"Journal of neurosurgical anesthesiology","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neurosurgical anesthesiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/ANA.0000000000000979","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANESTHESIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Benzodiazepines are extensively utilized in pediatric anesthesia and critical care for their anxiolytic and sedative properties. However, preclinical studies indicate that neonatal exposure to GABAergic drugs, including benzodiazepines, leads to long-term cognitive deficits, potentially mediated by altered GABAergic signaling during brain development. This preclinical study investigated the impact of early-life diazepam exposure on cortical neuronal morphology, specifically exploring dendritic arborization and spine density, crucial factors in synaptogenesis.
Methods: Male and female Sprague Dawley rat pups were exposed to a single neonatal dose of diazepam (30 mg/kg) or vehicle on postnatal day (PND) 7. Golgi-Cox staining was used to assess cortical pyramidal neuron development at 4 developmental stages: neonatal (PND8), infantile (PND15), juvenile (PND30), and adolescence (PND42). Animals were randomized equally to 4 groups: male-vehicle, male-diazepam, female-vehicle, and female-diazepam. Neuronal morphology was evaluated after reconstruction in neurolucida, and dendritic spine density was analyzed through high-power photomicrographs using ImageJ.
Results: Diazepam exposure resulted in decreased dendritic complexity in both sexes, with reduced arborization and spine density observed in cortical pyramidal neurons. Significant differences were found at each developmental stage, indicating a persistent impact. Dendritic length increased with age but was attenuated by diazepam exposure. Branching length analysis revealed decreased complexity after diazepam treatment. Spine density at PND42 was significantly reduced in both apical and basal dendrites after diazepam exposure.
Conclusions: Neonatal diazepam exposure adversely affected cortical pyramidal neuron development, leading to persistent alterations in dendritic arborization and spine density. These structural changes suggest potential risks associated with early-life diazepam exposure. Further research is needed to unravel the functional consequences of these anatomic alterations.
期刊介绍:
The Journal of Neurosurgical Anesthesiology (JNA) is a peer-reviewed publication directed to an audience of neuroanesthesiologists, neurosurgeons, neurosurgical monitoring specialists, neurosurgical support staff, and Neurosurgical Intensive Care Unit personnel. The journal publishes original peer-reviewed studies in the form of Clinical Investigations, Laboratory Investigations, Clinical Reports, Review Articles, Journal Club synopses of current literature from related journals, presentation of Points of View on controversial issues, Book Reviews, Correspondence, and Abstracts from affiliated neuroanesthesiology societies.
JNA is the Official Journal of the Society for Neuroscience in Anesthesiology and Critical Care, the Neuroanaesthesia and Critical Care Society of Great Britain and Ireland, the Association de Neuro-Anesthésiologie Réanimation de langue Française, the Wissenschaftlicher Arbeitskreis Neuroanästhesie der Deutschen Gesellschaft fur Anästhesiologie und Intensivmedizen, the Arbeitsgemeinschaft Deutschsprachiger Neuroanästhesisten und Neuro-Intensivmediziner, the Korean Society of Neuroanesthesia, the Japanese Society of Neuroanesthesia and Critical Care, the Neuroanesthesiology Chapter of the Colegio Mexicano de Anesthesiología, the Indian Society of Neuroanesthesiology and Critical Care, and the Thai Society for Neuroanesthesia.