{"title":"A single gene determines allorecognition in hydrozoan jellyfish Cladonema radiatum inbred lines","authors":"Crystal Tang, Miwa Tamura-Nakano, Kenta Kobayakawa, Takuto Ozawa, Takao Onojima, Rei Kajitani, Takehiko Itoh, Kazunori Tachibana","doi":"10.1002/jez.2853","DOIUrl":null,"url":null,"abstract":"<p>Allorecognition—the ability of an organism to discriminate between self and nonself—is crucial to colonial marine animals to avoid invasion by other individuals in the same habitat. The cnidarian hydroid <i>Hydractinia</i> has long been a major research model in studying invertebrate allorecognition, establishing a rich knowledge foundation. In this study, we introduce a new cnidarian model <i>Cladonema radiatum</i> (<i>C. radiatum</i>). <i>C. radiatum</i> is a hydroid jellyfish which also forms polyp colonies interconnected with stolons. Allorecognition responses—fusion or regression of stolons—are observed when stolons encounter each other. By transmission electron microscopy, we observe rapid tissue remodeling contributing to gastrovascular system connection in fusion. Meanwhile, rejection responses are regulated by reconstruction of the chitinous exoskeleton perisarc, and induction of necrotic and autophagic cellular responses at cells in contact with the opponent. Genetic analysis identifies allorecognition genes: six <i>Alr</i> genes located on the putative allorecognition complex and four immunoglobulin superfamily genes on a separate genome region. <i>C. radiatum</i> allorecognition genes show notable conservation with the <i>Hydractinia Alr</i> family. Remarkedly, stolon encounter assays of inbred lines reveal that genotypes of <i>Alr1</i> solely determine allorecognition outcomes in <i>C. radiatum</i>.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jez.2853","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jez.2853","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Allorecognition—the ability of an organism to discriminate between self and nonself—is crucial to colonial marine animals to avoid invasion by other individuals in the same habitat. The cnidarian hydroid Hydractinia has long been a major research model in studying invertebrate allorecognition, establishing a rich knowledge foundation. In this study, we introduce a new cnidarian model Cladonema radiatum (C. radiatum). C. radiatum is a hydroid jellyfish which also forms polyp colonies interconnected with stolons. Allorecognition responses—fusion or regression of stolons—are observed when stolons encounter each other. By transmission electron microscopy, we observe rapid tissue remodeling contributing to gastrovascular system connection in fusion. Meanwhile, rejection responses are regulated by reconstruction of the chitinous exoskeleton perisarc, and induction of necrotic and autophagic cellular responses at cells in contact with the opponent. Genetic analysis identifies allorecognition genes: six Alr genes located on the putative allorecognition complex and four immunoglobulin superfamily genes on a separate genome region. C. radiatum allorecognition genes show notable conservation with the Hydractinia Alr family. Remarkedly, stolon encounter assays of inbred lines reveal that genotypes of Alr1 solely determine allorecognition outcomes in C. radiatum.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.