{"title":"Discovery of Fluorescent Naturally-Occurring Inhibitor of SARS-CoV-2 Main Protease by AIE Fluorescent Probe","authors":"Hao Lin, Chong-Jing Zhang","doi":"10.1002/cmdc.202400311","DOIUrl":null,"url":null,"abstract":"<p>Target-based high-throughput screening (HTS) is an efficient way to identify potent drugs. However, the accuracy of HTS could be affected by Pan-Assay Interference Compounds (PAINS). One reason for the generation of PAINS is that the inherent photophysical property of screened compounds could interfere with typically used assay signals including absorption and fluorescence. Our previous studies indicate that the fluorescent probe based on the fluorophore with characteristics of aggregation-induced emission (AIE) could provide high accuracy of HTS, especially for the fluorescent natural products. Herein, we report an AIE-based fluorescent probe for the main protease (M<sup>pro</sup>) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We designed and synthesized an AIE fluorescent probe ZLHG5, which has a site that can be specifically cleaved by M<sup>pro</sup> to produce a light-up fluorescence. Thanks to the large Stokes shift of AIE fluorophore (~200 nm), the probe could be effectively used for HTS of M<sup>pro</sup> inhibitors. After screening a library of fluorescent natural products with ZLHG5, we obtained two coumarin-originated natural compounds with potent inhibitory activity towards M<sup>pro</sup> protease. This study provides both useful fluorescent HTS probe and potent inhibitors for M<sup>pro</sup> protease.</p>","PeriodicalId":147,"journal":{"name":"ChemMedChem","volume":"19 21","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemMedChem","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cmdc.202400311","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Target-based high-throughput screening (HTS) is an efficient way to identify potent drugs. However, the accuracy of HTS could be affected by Pan-Assay Interference Compounds (PAINS). One reason for the generation of PAINS is that the inherent photophysical property of screened compounds could interfere with typically used assay signals including absorption and fluorescence. Our previous studies indicate that the fluorescent probe based on the fluorophore with characteristics of aggregation-induced emission (AIE) could provide high accuracy of HTS, especially for the fluorescent natural products. Herein, we report an AIE-based fluorescent probe for the main protease (Mpro) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We designed and synthesized an AIE fluorescent probe ZLHG5, which has a site that can be specifically cleaved by Mpro to produce a light-up fluorescence. Thanks to the large Stokes shift of AIE fluorophore (~200 nm), the probe could be effectively used for HTS of Mpro inhibitors. After screening a library of fluorescent natural products with ZLHG5, we obtained two coumarin-originated natural compounds with potent inhibitory activity towards Mpro protease. This study provides both useful fluorescent HTS probe and potent inhibitors for Mpro protease.
期刊介绍:
Quality research. Outstanding publications. With an impact factor of 3.124 (2019), ChemMedChem is a top journal for research at the interface of chemistry, biology and medicine. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
ChemMedChem publishes primary as well as critical secondary and tertiary information from authors across and for the world. Its mission is to integrate the wide and flourishing field of medicinal and pharmaceutical sciences, ranging from drug design and discovery to drug development and delivery, from molecular modeling to combinatorial chemistry, from target validation to lead generation and ADMET studies. ChemMedChem typically covers topics on small molecules, therapeutic macromolecules, peptides, peptidomimetics, and aptamers, protein-drug conjugates, nucleic acid therapies, and beginning 2017, nanomedicine, particularly 1) targeted nanodelivery, 2) theranostic nanoparticles, and 3) nanodrugs.
Contents
ChemMedChem publishes an attractive mixture of:
Full Papers and Communications
Reviews and Minireviews
Patent Reviews
Highlights and Concepts
Book and Multimedia Reviews.