Balancing Pd-H Interactions: Thiolate-Protected Palladium Nanoclusters for Robust and Rapid Hydrogen Gas Sensing.

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zhuo Chen, Peng Yuan, Cailing Chen, Xinhuilan Wang, Jinrong Wang, Jiaqi Jia, Bambar Davaasuren, Zhiping Lai, Niveen M Khashab, Kuo-Wei Huang, Osman M Bakr, Jun Yin, Khaled N Salama
{"title":"Balancing Pd-H Interactions: Thiolate-Protected Palladium Nanoclusters for Robust and Rapid Hydrogen Gas Sensing.","authors":"Zhuo Chen, Peng Yuan, Cailing Chen, Xinhuilan Wang, Jinrong Wang, Jiaqi Jia, Bambar Davaasuren, Zhiping Lai, Niveen M Khashab, Kuo-Wei Huang, Osman M Bakr, Jun Yin, Khaled N Salama","doi":"10.1002/adma.202404291","DOIUrl":null,"url":null,"abstract":"<p><p>The transition toward hydrogen gas (H<sub>2</sub>) as an eco-friendly and renewable energy source necessitates advanced safety technologies, particularly robust sensors for H<sub>2</sub> leak detection and concentration monitoring. Although palladium (Pd)-based materials are preferred for their strong H<sub>2</sub> affinity, intense palladium-hydrogen (Pd-H) interactions lead to phase transitions to palladium hydride (PdH<sub>x</sub>), compromising sensors' durability and detection speeds after multiple uses. In response, this study introduces a high-performance H<sub>2</sub> sensor designed from thiolate-protected Pd nanoclusters (Pd<sub>8</sub>SR<sub>16</sub>), which leverages the synergistic effect between the metal and protective ligands to form an intermediate palladium-hydrogen-sulfur (Pd-H-S) state during H<sub>2</sub> adsorption. Striking a balance, it preserves Pd-H binding affinity while preventing excessive interaction, thus lowering the energy required for H<sub>2</sub> desorption. The dynamic adsorption-dissociation-recombination-desorption process is efficiently and highly reversible with Pd<sub>8</sub>SR<sub>16</sub>, ensuring robust and rapid H<sub>2</sub> sensing at parts per million (ppm). The Pd<sub>8</sub>SR<sub>16</sub>-based sensor demonstrates exceptional stability (50 cycles; 0.11% standard deviation in response), prompt response/recovery (t<sub>90</sub> = 0.95 s/6 s), low limit of detection (LoD, 1 ppm), and ambient temperature operability, ranking it among the most sensitive Pd-based H<sub>2</sub> sensors. Furthermore, a multifunctional prototype demonstrates the practicality of real-world gas sensing using ligand-protected metal nanoclusters.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":null,"pages":null},"PeriodicalIF":27.4000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202404291","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The transition toward hydrogen gas (H2) as an eco-friendly and renewable energy source necessitates advanced safety technologies, particularly robust sensors for H2 leak detection and concentration monitoring. Although palladium (Pd)-based materials are preferred for their strong H2 affinity, intense palladium-hydrogen (Pd-H) interactions lead to phase transitions to palladium hydride (PdHx), compromising sensors' durability and detection speeds after multiple uses. In response, this study introduces a high-performance H2 sensor designed from thiolate-protected Pd nanoclusters (Pd8SR16), which leverages the synergistic effect between the metal and protective ligands to form an intermediate palladium-hydrogen-sulfur (Pd-H-S) state during H2 adsorption. Striking a balance, it preserves Pd-H binding affinity while preventing excessive interaction, thus lowering the energy required for H2 desorption. The dynamic adsorption-dissociation-recombination-desorption process is efficiently and highly reversible with Pd8SR16, ensuring robust and rapid H2 sensing at parts per million (ppm). The Pd8SR16-based sensor demonstrates exceptional stability (50 cycles; 0.11% standard deviation in response), prompt response/recovery (t90 = 0.95 s/6 s), low limit of detection (LoD, 1 ppm), and ambient temperature operability, ranking it among the most sensitive Pd-based H2 sensors. Furthermore, a multifunctional prototype demonstrates the practicality of real-world gas sensing using ligand-protected metal nanoclusters.

平衡 Pd-H 相互作用:用于稳健快速氢气传感的硫醇保护钯纳米簇。
氢气(H2)作为一种生态友好型可再生能源,需要先进的安全技术,特别是用于氢气泄漏检测和浓度监控的强大传感器。虽然钯(Pd)基材料因其对 H2 的强亲和力而受到青睐,但强烈的钯氢(Pd-H)相互作用会导致钯氢化物(PdHx)的相变,从而影响传感器在多次使用后的耐用性和检测速度。为此,本研究介绍了一种由硫醇保护钯纳米团簇(Pd8SR16)设计而成的高性能 H2 传感器,该传感器利用金属与保护配体之间的协同效应,在吸附 H2 的过程中形成中间钯-氢-硫(Pd-H-S)态。这样既能保持 Pd-H 的结合亲和力,又能防止过度的相互作用,从而降低 H2 解吸所需的能量。Pd8SR16 可以高效、高度可逆地实现动态吸附-解离-重合-解吸过程,从而确保在百万分之一(ppm)的浓度下实现稳健、快速的 H2 检测。基于 Pd8SR16 的传感器具有超强的稳定性(50 次循环;响应标准偏差为 0.11%)、快速响应/恢复(t90 = 0.95 秒/6 秒)、低检测限(LoD,1 ppm)和环境温度可操作性,是最灵敏的钯基 H2 传感器之一。此外,多功能原型展示了使用配体保护的金属纳米簇进行实际气体传感的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信