Rongjun Sun, Zijian Zhu, Na Tian, Yihe Zhang, Hongwei Huang
{"title":"Hydrogen Bonds and In situ Photoinduced Metallic Bi0/Ni0 Accelerating Z-Scheme Charge Transfer of BiOBr@NiFe-LDH for Highly Efficient Photocatalysis","authors":"Rongjun Sun, Zijian Zhu, Na Tian, Yihe Zhang, Hongwei Huang","doi":"10.1002/anie.202408862","DOIUrl":null,"url":null,"abstract":"<p>For heterojunction system, the lack of stable interfacial driving force and definite charge transfer channel makes the charge separation and transfer efficiency unsatisfactory. The photoreaction mechanism occurring at the interface also receives less attention. Herein, a 2D/2D Z-scheme junction BiOBr@NiFe-LDH with large-area contact featured by short interface hydrogen bonds and strong interfacial electric field (IEF) is synthesized, and in situ photoinduced metallic species assisting charge transfer mechanism is demonstrated. The hydrogen bonds between O atoms from BiOBr and H atoms from NiFe-LDH induce a significant interfacial charge redistribution, establishing a robust IEF. Notably, during photocatalytic reaction, Bi<sup>0</sup> and Ni<sup>0</sup> are in situ performed in heterojunction, which separately act as electron transport mediator and electron trap to further accelerate charge transfer efficiency up to 71.2 %. Theoretical calculations further demonstrate that the existence of Bi<sup>0</sup> strengthens the IEF. Therefore, high-speed spatial charge separation is realized in Bi<sup>0</sup>/BiOBr@Ni<sup>0</sup>/NiFe-LDH, leading to a prominent photocatalytic activity with a tetracycline removal ratio of 88.3 % within 7 min under visible-light irradiation and the presence of persulfate, far exceeding majority of photocatalysts reported previously. This study provides valid insights for designing hydrogen bonding heterojunction systems, and advances mechanistic understanding on in situ photoreaction at interfaces.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"63 41","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2024-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202408862","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
For heterojunction system, the lack of stable interfacial driving force and definite charge transfer channel makes the charge separation and transfer efficiency unsatisfactory. The photoreaction mechanism occurring at the interface also receives less attention. Herein, a 2D/2D Z-scheme junction BiOBr@NiFe-LDH with large-area contact featured by short interface hydrogen bonds and strong interfacial electric field (IEF) is synthesized, and in situ photoinduced metallic species assisting charge transfer mechanism is demonstrated. The hydrogen bonds between O atoms from BiOBr and H atoms from NiFe-LDH induce a significant interfacial charge redistribution, establishing a robust IEF. Notably, during photocatalytic reaction, Bi0 and Ni0 are in situ performed in heterojunction, which separately act as electron transport mediator and electron trap to further accelerate charge transfer efficiency up to 71.2 %. Theoretical calculations further demonstrate that the existence of Bi0 strengthens the IEF. Therefore, high-speed spatial charge separation is realized in Bi0/BiOBr@Ni0/NiFe-LDH, leading to a prominent photocatalytic activity with a tetracycline removal ratio of 88.3 % within 7 min under visible-light irradiation and the presence of persulfate, far exceeding majority of photocatalysts reported previously. This study provides valid insights for designing hydrogen bonding heterojunction systems, and advances mechanistic understanding on in situ photoreaction at interfaces.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.