Unexpected Self-Assembly of Nanographene Oxide Membranes upon Electron Beam Irradiation for Ultrafast Ion Sieving.

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Fangfang Dai, Zonglin Gu, Shouyuan Hu, Bingquan Peng, Rujie Yang, Jie Jiang, Lufeng Yao, Shanshan Liang, Yusong Tu, Pei Li, Liang Chen
{"title":"Unexpected Self-Assembly of Nanographene Oxide Membranes upon Electron Beam Irradiation for Ultrafast Ion Sieving.","authors":"Fangfang Dai, Zonglin Gu, Shouyuan Hu, Bingquan Peng, Rujie Yang, Jie Jiang, Lufeng Yao, Shanshan Liang, Yusong Tu, Pei Li, Liang Chen","doi":"10.1002/advs.202404001","DOIUrl":null,"url":null,"abstract":"<p><p>Nanographene oxide (nGO) flakes-graphene oxide with a lateral size of ≈100 nm or less-hold great promise for superior flux and energy-efficient nanofiltration membranes for desalination and precise ionic sieving owing to their unique high-density water channels with less tortuousness. However, their potential usage is currently limited by several challenges, including the tricky self-assembly of nano-sized flakes on substrates with micron-sized pores, severe swelling in aqueous solutions, and mechanical instability. Herein, the successful fabrication of a robust membrane stacked with nGO flakes on a substrate with a pore size of 0.22 µm by vacuum filtration is reported. This membrane achieved an unprecedented water permeance above 819.1 LMH bar<sup>-1</sup>, with a high rejection rate of 99.7% for multivalent metal ions. The nGO flakes prepared using an electron beam irradiation method, have uniquely pure hydroxyl groups and abundant aromatic regions. The calculations revealed the strong hydrogen bonds between two nGO flakes, which arise from hydroxyl groups, coupled with hydrophobic aromatic regions, greatly enhance the stability of stacked flakes in aqueous solutions and increase their effective lateral size. The research presents a simple yet effective approach toward the fabrication of advanced 2D nanographene membranes with superior performance for ion sieving applications.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":null,"pages":null},"PeriodicalIF":14.3000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202404001","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Nanographene oxide (nGO) flakes-graphene oxide with a lateral size of ≈100 nm or less-hold great promise for superior flux and energy-efficient nanofiltration membranes for desalination and precise ionic sieving owing to their unique high-density water channels with less tortuousness. However, their potential usage is currently limited by several challenges, including the tricky self-assembly of nano-sized flakes on substrates with micron-sized pores, severe swelling in aqueous solutions, and mechanical instability. Herein, the successful fabrication of a robust membrane stacked with nGO flakes on a substrate with a pore size of 0.22 µm by vacuum filtration is reported. This membrane achieved an unprecedented water permeance above 819.1 LMH bar-1, with a high rejection rate of 99.7% for multivalent metal ions. The nGO flakes prepared using an electron beam irradiation method, have uniquely pure hydroxyl groups and abundant aromatic regions. The calculations revealed the strong hydrogen bonds between two nGO flakes, which arise from hydroxyl groups, coupled with hydrophobic aromatic regions, greatly enhance the stability of stacked flakes in aqueous solutions and increase their effective lateral size. The research presents a simple yet effective approach toward the fabrication of advanced 2D nanographene membranes with superior performance for ion sieving applications.

Abstract Image

用于超快离子筛分的纳米氧化石墨烯膜在电子束照射下的意外自组装
纳米氧化石墨烯(nGO)薄片--横向尺寸≈100 nm 或更小的氧化石墨烯--因其独特的高密度水通道和较小的曲折性,在用于海水淡化和精确离子筛分的高通量、高能效纳米滤膜方面大有可为。然而,它们的潜在用途目前受到几项挑战的限制,包括在具有微米级孔隙的基底上棘手地自组装纳米级薄片、在水溶液中严重溶胀以及机械不稳定性。本文报告了通过真空过滤法在孔径为 0.22 微米的基底上成功制造出一种由 nGO 片材堆叠而成的坚固膜。这种膜的透水性达到了前所未有的 819.1 LMH bar-1 以上,对多价金属离子的排斥率高达 99.7%。采用电子束辐照法制备的 nGO 片材具有独特的纯羟基和丰富的芳香区。计算结果表明,两个 nGO 薄片之间由羟基产生的强氢键与疏水的芳香区相结合,大大增强了叠层薄片在水溶液中的稳定性,并增大了其有效横向尺寸。这项研究提出了一种简单而有效的方法,可用于制造性能优越的先进二维纳米石墨烯膜,用于离子筛分应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信