Split Luciferase Molecular Tension Sensors for Bioluminescent Readout of Mechanical Forces in Biological Systems.

IF 8.2 1区 化学 Q1 CHEMISTRY, ANALYTICAL
ACS Sensors Pub Date : 2024-07-26 Epub Date: 2024-07-07 DOI:10.1021/acssensors.3c02664
Brian L Zhong, Jeandele M Elliot, Pengli Wang, Hongquan Li, R Nelson Hall, Bo Wang, Manu Prakash, Alexander R Dunn
{"title":"Split Luciferase Molecular Tension Sensors for Bioluminescent Readout of Mechanical Forces in Biological Systems.","authors":"Brian L Zhong, Jeandele M Elliot, Pengli Wang, Hongquan Li, R Nelson Hall, Bo Wang, Manu Prakash, Alexander R Dunn","doi":"10.1021/acssensors.3c02664","DOIUrl":null,"url":null,"abstract":"<p><p>The ability of proteins to sense and transmit mechanical forces underlies many biological processes, but characterizing these forces in biological systems remains a challenge. Existing genetically encoded force sensors typically rely on fluorescence or bioluminescence resonance energy transfer (FRET or BRET) to visualize tension. However, these force sensing modules are relatively large, and interpreting measurements requires specialized image analysis and careful control experiments. Here, we report a compact molecular tension sensor that generates a bioluminescent signal in response to tension. This sensor (termed PILATeS) makes use of the split NanoLuc luciferase and consists of the <i>H. sapiens</i> titin I10 domain with the insertion of a 10-15 amino acid tag derived from the C-terminal β-strand of NanoLuc. Mechanical load across PILATeS mediates exposure of this tag to recruit the complementary split NanoLuc fragment, resulting in force-dependent bioluminescence. We demonstrate the ability of PILATeS to report biologically meaningful forces by visualizing forces at the interface between integrins and extracellular matrix substrates. We further use PILATeS as a genetically encoded sensor of tension experienced by the mechanosensing protein vinculin. We anticipate that PILATeS will provide an accessible means of visualizing molecular-scale forces in biological systems.</p>","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":null,"pages":null},"PeriodicalIF":8.2000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssensors.3c02664","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The ability of proteins to sense and transmit mechanical forces underlies many biological processes, but characterizing these forces in biological systems remains a challenge. Existing genetically encoded force sensors typically rely on fluorescence or bioluminescence resonance energy transfer (FRET or BRET) to visualize tension. However, these force sensing modules are relatively large, and interpreting measurements requires specialized image analysis and careful control experiments. Here, we report a compact molecular tension sensor that generates a bioluminescent signal in response to tension. This sensor (termed PILATeS) makes use of the split NanoLuc luciferase and consists of the H. sapiens titin I10 domain with the insertion of a 10-15 amino acid tag derived from the C-terminal β-strand of NanoLuc. Mechanical load across PILATeS mediates exposure of this tag to recruit the complementary split NanoLuc fragment, resulting in force-dependent bioluminescence. We demonstrate the ability of PILATeS to report biologically meaningful forces by visualizing forces at the interface between integrins and extracellular matrix substrates. We further use PILATeS as a genetically encoded sensor of tension experienced by the mechanosensing protein vinculin. We anticipate that PILATeS will provide an accessible means of visualizing molecular-scale forces in biological systems.

Abstract Image

用于生物系统机械力生物发光读数的分体荧光素酶分子张力传感器。
蛋白质感知和传递机械力的能力是许多生物过程的基础,但如何表征生物系统中的这些力仍然是一项挑战。现有的基因编码力传感器通常依靠荧光或生物发光共振能量转移(FRET 或 BRET)来观察张力。然而,这些力传感模块相对较大,解释测量结果需要专门的图像分析和仔细的控制实验。在这里,我们报告了一种结构紧凑的分子张力传感器,它能在张力作用下产生生物发光信号。这种传感器(称为 PILATeS)利用了拆分的 NanoLuc 荧光素酶,由 H. sapiens titin I10 结构域和从 NanoLuc C 端 β 链插入的 10-15 个氨基酸标签组成。通过 PILATeS 产生的机械负荷会促使该标记暴露,从而招募互补的 NanoLuc 分裂片段,产生力依赖性生物发光。通过可视化整合素与细胞外基质底物界面上的作用力,我们证明了 PILATeS 能够报告具有生物学意义的作用力。我们还将 PILATeS 用作机械传感蛋白 vinculin 所经历张力的基因编码传感器。我们预计 PILATeS 将为生物系统中分子尺度力的可视化提供一种便捷的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Sensors
ACS Sensors Chemical Engineering-Bioengineering
CiteScore
14.50
自引率
3.40%
发文量
372
期刊介绍: ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信