How atmospheric CO2 can inform us on annual and decadal shifts in the biospheric carbon uptake period

IF 5.2 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES
Theertha Kariyathan, Ana Bastos, Markus Reichstein, Wouter Peters, Julia Marshall
{"title":"How atmospheric CO2 can inform us on annual and decadal shifts in the biospheric carbon uptake period","authors":"Theertha Kariyathan, Ana Bastos, Markus Reichstein, Wouter Peters, Julia Marshall","doi":"10.5194/egusphere-2024-1382","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> The carbon uptake period (CUP) refers to the time of each year during which the rate of photosynthetic uptake surpasses that of respiration in the terrestrial biosphere, resulting in a net absorption of CO<sub>2</sub> from the atmosphere to the land. Since climate drivers influence both photosynthesis and respiration, the CUP offers valuable insights into how the terrestrial biosphere responds to climate variations and affects the carbon budget. Several studies have assessed large-scale changes in CUP based on seasonal metrics from CO<sub>2</sub> mole fraction measurements. However, an in-depth understanding of the sensitivity of the CUP as derived from the CO<sub>2</sub> mole fraction data (CUP<sub>MR</sub>) to actual changes in the CUP of the net ecosystem exchange (CUP<sub>NEE</sub>) is missing. In this study, we specifically assess the impact of (i) atmospheric transport (ii) inter-annual variability in CUP<sub>NEE</sub> (iii) regional contribution to the signals that integrate at different background sites where CO<sub>2</sub> dry air mole fraction measurements are made. We conducted idealized simulations where we imposed known changes (∆) to the CUP<sub>NEE</sub> in the Northern Hemisphere to test the effect of the aforementioned factors in CUP<sub>MR</sub> metrics at ten Northern Hemisphere sites. Our analysis indicates a significant damping of changes in the simulated ∆CUP<sub>MR</sub> due to the integration of signals with varying CUP<sub>NEE</sub> timing across regions. CUP<sub>MR</sub> at well-studied sites such as Mauna Loa, Barrow, and Alert showed only 50 % of the applied ∆CUP<sub>NEE</sub> under non interannually-varying atmospheric transport conditions. Further, our synthetic analyses conclude that interannual variability (IAV) in atmospheric transport accounts for a significant part of the changes in the observed signals. However, even after separating the contribution of transport IAV, the estimates of surface changes in CUP by previous studies are not likely to provide an accurate magnitude of the actual changes occurring over the surface. The observed signal experiences significant damping as the atmosphere averages out non-synchronous signals from various regions.","PeriodicalId":8611,"journal":{"name":"Atmospheric Chemistry and Physics","volume":null,"pages":null},"PeriodicalIF":5.2000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Chemistry and Physics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/egusphere-2024-1382","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. The carbon uptake period (CUP) refers to the time of each year during which the rate of photosynthetic uptake surpasses that of respiration in the terrestrial biosphere, resulting in a net absorption of CO2 from the atmosphere to the land. Since climate drivers influence both photosynthesis and respiration, the CUP offers valuable insights into how the terrestrial biosphere responds to climate variations and affects the carbon budget. Several studies have assessed large-scale changes in CUP based on seasonal metrics from CO2 mole fraction measurements. However, an in-depth understanding of the sensitivity of the CUP as derived from the CO2 mole fraction data (CUPMR) to actual changes in the CUP of the net ecosystem exchange (CUPNEE) is missing. In this study, we specifically assess the impact of (i) atmospheric transport (ii) inter-annual variability in CUPNEE (iii) regional contribution to the signals that integrate at different background sites where CO2 dry air mole fraction measurements are made. We conducted idealized simulations where we imposed known changes (∆) to the CUPNEE in the Northern Hemisphere to test the effect of the aforementioned factors in CUPMR metrics at ten Northern Hemisphere sites. Our analysis indicates a significant damping of changes in the simulated ∆CUPMR due to the integration of signals with varying CUPNEE timing across regions. CUPMR at well-studied sites such as Mauna Loa, Barrow, and Alert showed only 50 % of the applied ∆CUPNEE under non interannually-varying atmospheric transport conditions. Further, our synthetic analyses conclude that interannual variability (IAV) in atmospheric transport accounts for a significant part of the changes in the observed signals. However, even after separating the contribution of transport IAV, the estimates of surface changes in CUP by previous studies are not likely to provide an accurate magnitude of the actual changes occurring over the surface. The observed signal experiences significant damping as the atmosphere averages out non-synchronous signals from various regions.
大气中的二氧化碳如何让我们了解生物圈碳吸收期的年度和十年期变化
摘要碳吸收期(CUP)是指每年陆地生物圈中光合作用吸收速率超过呼吸作用吸收速率,从而导致陆地从大气中净吸收二氧化碳的时间。由于气候驱动因素对光合作用和呼吸作用都有影响,因此陆地生物圈如何对气候变异做出反应并影响碳收支,陆地碳收支提供了宝贵的见解。有几项研究根据二氧化碳摩尔分数测量值的季节性指标评估了CUP的大规模变化。然而,我们还没有深入了解二氧化碳摩尔分数数据(CUPMR)得出的生态系统净交换量(CUPNEE)对生态系统碳平衡实际变化的敏感性。在本研究中,我们特别评估了以下因素的影响:(i)大气传输;(ii)CUPNEE 的年际变化;(iii)区域因素对在二氧化碳干空气摩尔分数测量的不同背景站点整合信号的影响。我们进行了理想化模拟,对北半球的 CUPNEE 施加了已知变化(∆),以测试上述因素对北半球十个站点的 CUPMR 指标的影响。我们的分析表明,由于不同地区的 CUPNEE 时间信号的整合,模拟 ∆CUPMR 的变化受到了明显的抑制。在非年际变化的大气传输条件下,莫纳洛亚、巴罗和阿勒特等研究充分的站点的 CUPMR 仅为应用 ∆CUPNEE 的 50%。此外,我们的合成分析得出结论,大气传输的年际变化(IAV)占观测信号变化的很大一部分。然而,即使在分离了大气传输年际变率的贡献之后,以往研究对 CUP 表面变化的估计也不可能提供表面实际变化的准确量级。由于大气层会平均掉来自不同区域的非同步信号,因此观测到的信号会出现明显的阻尼。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Atmospheric Chemistry and Physics
Atmospheric Chemistry and Physics 地学-气象与大气科学
CiteScore
10.70
自引率
20.60%
发文量
702
审稿时长
6 months
期刊介绍: Atmospheric Chemistry and Physics (ACP) is a not-for-profit international scientific journal dedicated to the publication and public discussion of high-quality studies investigating the Earth''s atmosphere and the underlying chemical and physical processes. It covers the altitude range from the land and ocean surface up to the turbopause, including the troposphere, stratosphere, and mesosphere. The main subject areas comprise atmospheric modelling, field measurements, remote sensing, and laboratory studies of gases, aerosols, clouds and precipitation, isotopes, radiation, dynamics, biosphere interactions, and hydrosphere interactions. The journal scope is focused on studies with general implications for atmospheric science rather than investigations that are primarily of local or technical interest.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信