Iyer-Wald ambiguities and gauge covariance of Entropy current in Higher derivative theories of gravity

IF 5.4 1区 物理与天体物理 Q1 Physics and Astronomy
Alokananda Kar, Prateksh Dhivakar, Shuvayu Roy, Binata Panda, Anowar Shaikh
{"title":"Iyer-Wald ambiguities and gauge covariance of Entropy current in Higher derivative theories of gravity","authors":"Alokananda Kar, Prateksh Dhivakar, Shuvayu Roy, Binata Panda, Anowar Shaikh","doi":"10.1007/jhep07(2024)016","DOIUrl":null,"url":null,"abstract":"<p>In [1, 2] [arXiv:2105.06455, arXiv:2206.04538], the authors have been able to argue for an ultra-local version of the second law of black hole mechanics, for arbitrary diffeomorphism invariant theories of gravity non-minimally coupled to matter fields, by constructing an entropy current on the dynamical horizon with manifestly positive divergence. This has been achieved by working in the horizon-adapted coordinate system. In this work, we show that the local entropy production through the divergence of the entropy current is covariant under affine reparametrizations that leave the gauge of horizon-adapted coordinates invariant. We explicitly derive a formula for how the entropy current transforms under such coordinate transformations. This extends the analysis of [3] [arXiv:2204.08447] for arbitrary diffeomorphism invariant theories of gravity non-minimally coupled to matter fields. We also study the Iyer-Wald ambiguities of the covariant phase formalism that generically plague the components of the entropy current.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/jhep07(2024)016","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

In [1, 2] [arXiv:2105.06455, arXiv:2206.04538], the authors have been able to argue for an ultra-local version of the second law of black hole mechanics, for arbitrary diffeomorphism invariant theories of gravity non-minimally coupled to matter fields, by constructing an entropy current on the dynamical horizon with manifestly positive divergence. This has been achieved by working in the horizon-adapted coordinate system. In this work, we show that the local entropy production through the divergence of the entropy current is covariant under affine reparametrizations that leave the gauge of horizon-adapted coordinates invariant. We explicitly derive a formula for how the entropy current transforms under such coordinate transformations. This extends the analysis of [3] [arXiv:2204.08447] for arbitrary diffeomorphism invariant theories of gravity non-minimally coupled to matter fields. We also study the Iyer-Wald ambiguities of the covariant phase formalism that generically plague the components of the entropy current.

高导数引力理论中熵流的伊耶-瓦尔德模糊性和规协方差
在[1, 2] [arXiv:2105.06455, arXiv:2206.04538]中,作者们通过在动力学视界上构建一个明显正发散的熵流,论证了任意衍射不变的引力理论与物质场非最小耦合的黑洞力学第二定律的超局域版本。这是在视界适配坐标系中实现的。在这项工作中,我们证明了通过熵流发散产生的局部熵在仿射重拟态下是协变的,而仿射重拟态会使地平线适配坐标系的量规保持不变。我们明确推导出了熵流在这种坐标变换下如何转化的公式。这扩展了 [3] [arXiv:2204.08447] 对与物质场非最小耦合的任意衍射不变引力理论的分析。我们还研究了协变相形式主义的艾耶-瓦尔德模糊性,它通常困扰着熵流的分量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of High Energy Physics
Journal of High Energy Physics 物理-物理:粒子与场物理
CiteScore
10.30
自引率
46.30%
发文量
2107
审稿时长
1.5 months
期刊介绍: The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal. Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles. JHEP presently encompasses the following areas of theoretical and experimental physics: Collider Physics Underground and Large Array Physics Quantum Field Theory Gauge Field Theories Symmetries String and Brane Theory General Relativity and Gravitation Supersymmetry Mathematical Methods of Physics Mostly Solvable Models Astroparticles Statistical Field Theories Mostly Weak Interactions Mostly Strong Interactions Quantum Field Theory (phenomenology) Strings and Branes Phenomenological Aspects of Supersymmetry Mostly Strong Interactions (phenomenology).
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信