{"title":"Double holography of entangled universes","authors":"Robert C. Myers, Shan-Ming Ruan, Tomonori Ugajin","doi":"10.1007/jhep07(2024)035","DOIUrl":null,"url":null,"abstract":"<p>We employ double holography to examine a system of two entangled gravitating universes that live on two codimension-one branes in an asymptotically AdS<sub>3</sub> spacetime with two disjoint conformal boundaries. There are distinct brane configurations depending on the temperature of the thermofield double (TFD) state between the left and right systems. The topology transition between two branes is naturally identified with the emergence of an Einstein-Rosen bridge connecting the two entangled universes. This doubly holographic construction offers a holographic perspective on gravitational collapse and black hole formation in brane universes. Through this holographic framework, we analyze the quantum information structure of the two gravitating universes. Specifically, we calculate the mutual information between defects present in the boundary theories on the left and right sides. Furthermore, we investigate the decoupling process in the Hayden-Preskill protocol applied to the two copies of the defect field theory and discuss the interpretation of the Yoshida-Kitaev decoding protocol.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/jhep07(2024)035","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
We employ double holography to examine a system of two entangled gravitating universes that live on two codimension-one branes in an asymptotically AdS3 spacetime with two disjoint conformal boundaries. There are distinct brane configurations depending on the temperature of the thermofield double (TFD) state between the left and right systems. The topology transition between two branes is naturally identified with the emergence of an Einstein-Rosen bridge connecting the two entangled universes. This doubly holographic construction offers a holographic perspective on gravitational collapse and black hole formation in brane universes. Through this holographic framework, we analyze the quantum information structure of the two gravitating universes. Specifically, we calculate the mutual information between defects present in the boundary theories on the left and right sides. Furthermore, we investigate the decoupling process in the Hayden-Preskill protocol applied to the two copies of the defect field theory and discuss the interpretation of the Yoshida-Kitaev decoding protocol.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).