Chitosan-Based Nano/Biomaterials in Bone Tissue Engineering and Regenerative Medicine: Recent Progress and Advances

IF 1.7 4区 化学 Q3 CHEMISTRY, ORGANIC
Taha Jafari, Seyed Morteza Naghib, M. R. Mozafari
{"title":"Chitosan-Based Nano/Biomaterials in Bone Tissue Engineering and Regenerative Medicine: Recent Progress and Advances","authors":"Taha Jafari, Seyed Morteza Naghib, M. R. Mozafari","doi":"10.2174/0115701794307242240612075648","DOIUrl":null,"url":null,"abstract":": The biopolymer chitosan, which is derived from chitin, has shown great promise for tissue regeneration and regulated drug delivery. Its broad-spectrum antibacterial action, low toxicity, biocompatibility, and many other attributes make it appealing for use in biomedical applications. Crucially, chitosan may be synthesized into a range of forms that can be customized to provide desired results, such as hydrogels, membranes, scaffolds, and nanoparticles. Hydrogels that are biocompatible and self-healing are innovative soft materials with considerable potential for use in biomedical applications. Hydrogels that self-heal using chitosan, which are mostly made by dynamic imine linkages, have gained a lot of interest because of their great biocompatibility, moderate preparation requirements, and capacity to mend themselves in a physiological setting. In this study, a summary of the applications of chitosan-based self-healing hydrogels in bone, cartilage, and tooth tissue regeneration and drug delivery is provided. Lastly, we have mentioned the difficulties and potential outcomes for the biomedical field's creation of hydrogels based on chitosan that can mend themselves.","PeriodicalId":11101,"journal":{"name":"Current organic synthesis","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current organic synthesis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2174/0115701794307242240612075648","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

Abstract

: The biopolymer chitosan, which is derived from chitin, has shown great promise for tissue regeneration and regulated drug delivery. Its broad-spectrum antibacterial action, low toxicity, biocompatibility, and many other attributes make it appealing for use in biomedical applications. Crucially, chitosan may be synthesized into a range of forms that can be customized to provide desired results, such as hydrogels, membranes, scaffolds, and nanoparticles. Hydrogels that are biocompatible and self-healing are innovative soft materials with considerable potential for use in biomedical applications. Hydrogels that self-heal using chitosan, which are mostly made by dynamic imine linkages, have gained a lot of interest because of their great biocompatibility, moderate preparation requirements, and capacity to mend themselves in a physiological setting. In this study, a summary of the applications of chitosan-based self-healing hydrogels in bone, cartilage, and tooth tissue regeneration and drug delivery is provided. Lastly, we have mentioned the difficulties and potential outcomes for the biomedical field's creation of hydrogels based on chitosan that can mend themselves.
壳聚糖基纳米/生物材料在骨组织工程和再生医学中的应用:最新进展与进步
:从甲壳素中提取的生物聚合物壳聚糖在组织再生和规范给药方面前景广阔。壳聚糖具有广谱抗菌作用、低毒性、生物相容性和许多其他特性,因此非常适合用于生物医学应用。最重要的是,壳聚糖可被合成为各种形式的产品,如水凝胶、膜、支架和纳米颗粒,并可根据需要进行定制。具有生物相容性和自愈性的水凝胶是一种创新型软材料,在生物医学应用方面具有相当大的潜力。利用壳聚糖(主要由动态亚胺连接而成)进行自愈合的水凝胶因其良好的生物相容性、适中的制备要求以及在生理环境下自我修复的能力而备受关注。本研究概述了壳聚糖基自愈合水凝胶在骨、软骨和牙组织再生以及药物输送方面的应用。最后,我们提到了在生物医学领域创造基于壳聚糖的可自我修复水凝胶的困难和潜在结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current organic synthesis
Current organic synthesis 化学-有机化学
CiteScore
3.40
自引率
5.60%
发文量
86
审稿时长
6-12 weeks
期刊介绍: Current Organic Synthesis publishes in-depth reviews, original research articles and letter/short communications on all areas of synthetic organic chemistry i.e. asymmetric synthesis, organometallic chemistry, novel synthetic approaches to complex organic molecules, carbohydrates, polymers, protein chemistry, DNA chemistry, supramolecular chemistry, molecular recognition and new synthetic methods in organic chemistry. The frontier reviews provide the current state of knowledge in these fields and are written by experts who are internationally known for their eminent research contributions. The journal is essential reading to all synthetic organic chemists. Current Organic Synthesis should prove to be of great interest to synthetic chemists in academia and industry who wish to keep abreast with recent developments in key fields of organic synthesis.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信