Douglas R. Anderson, Masakazu Onitsuka, Donal O'Regan
{"title":"Best Ulam constants for two-dimensional nonautonomous linear differential systems","authors":"Douglas R. Anderson, Masakazu Onitsuka, Donal O'Regan","doi":"10.1002/mana.202300357","DOIUrl":null,"url":null,"abstract":"<p>This study deals with the Ulam stability of nonautonomous linear differential systems without assuming the condition that they admit an exponential dichotomy. In particular, the best (minimal) Ulam constants for two-dimensional nonautonomous linear differential systems with generalized Jordan normal forms are derived. The obtained results are applicable not only to systems with solutions that exist globally on <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mo>−</mo>\n <mi>∞</mi>\n <mo>,</mo>\n <mi>∞</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(-\\infty,\\infty)$</annotation>\n </semantics></math>, but also to systems with solutions that blow up in finite time. New results are included even for constant coefficients. A wealth of examples are presented, and approximations of node, saddle, and focus are proposed. In addition, this is the first study to derive the best Ulam constants for nonautonomous systems other than periodic systems.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This study deals with the Ulam stability of nonautonomous linear differential systems without assuming the condition that they admit an exponential dichotomy. In particular, the best (minimal) Ulam constants for two-dimensional nonautonomous linear differential systems with generalized Jordan normal forms are derived. The obtained results are applicable not only to systems with solutions that exist globally on , but also to systems with solutions that blow up in finite time. New results are included even for constant coefficients. A wealth of examples are presented, and approximations of node, saddle, and focus are proposed. In addition, this is the first study to derive the best Ulam constants for nonautonomous systems other than periodic systems.