Critical Schrödinger–Bopp–Podolsky systems: solutions in the semiclassical limit

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Heydy M. Santos Damian, Gaetano Siciliano
{"title":"Critical Schrödinger–Bopp–Podolsky systems: solutions in the semiclassical limit","authors":"Heydy M. Santos Damian, Gaetano Siciliano","doi":"10.1007/s00526-024-02775-9","DOIUrl":null,"url":null,"abstract":"<p>In this paper we consider the following critical Schrödinger–Bopp–Podolsky system </p><span>$$\\begin{aligned} {\\left\\{ \\begin{array}{ll} -\\epsilon ^2 \\Delta u+ V(x)u+Q(x)\\phi u=h(x,u)+K(x)\\vert u \\vert ^{4}u&amp;{} \\text{ in } \\ \\mathbb {R}^3 \\\\ - \\Delta \\phi + a^{2}\\Delta ^{2} \\phi = 4\\pi Q(x) u^{2}&amp;{} \\text{ in } \\ \\mathbb {R}^3 \\end{array}\\right. } \\end{aligned}$$</span><p>in the unknowns <span>\\(u,\\phi :\\mathbb {R}^{3}\\rightarrow \\mathbb {R}\\)</span> and where <span>\\(\\varepsilon , a&gt;0\\)</span> are parameters. The functions <i>V</i>, <i>K</i>, <i>Q</i> satisfy suitable assumptions as well as the nonlinearity <i>h</i> which is subcritical. For any fixed <span>\\(a&gt;0\\)</span>, we show existence of “small” solutions in the semiclassical limit, namely whenever <span>\\(\\varepsilon \\rightarrow 0\\)</span>. We give also estimates of the norm of this solutions in terms of <span>\\(\\varepsilon \\)</span>. Moreover, we show also that fixed <span>\\(\\varepsilon \\)</span> suitably small, when <span>\\(a\\rightarrow 0\\)</span> the solutions found strongly converge to solutions of the Schrödinger-Poisson system.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-024-02775-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we consider the following critical Schrödinger–Bopp–Podolsky system

$$\begin{aligned} {\left\{ \begin{array}{ll} -\epsilon ^2 \Delta u+ V(x)u+Q(x)\phi u=h(x,u)+K(x)\vert u \vert ^{4}u&{} \text{ in } \ \mathbb {R}^3 \\ - \Delta \phi + a^{2}\Delta ^{2} \phi = 4\pi Q(x) u^{2}&{} \text{ in } \ \mathbb {R}^3 \end{array}\right. } \end{aligned}$$

in the unknowns \(u,\phi :\mathbb {R}^{3}\rightarrow \mathbb {R}\) and where \(\varepsilon , a>0\) are parameters. The functions VKQ satisfy suitable assumptions as well as the nonlinearity h which is subcritical. For any fixed \(a>0\), we show existence of “small” solutions in the semiclassical limit, namely whenever \(\varepsilon \rightarrow 0\). We give also estimates of the norm of this solutions in terms of \(\varepsilon \). Moreover, we show also that fixed \(\varepsilon \) suitably small, when \(a\rightarrow 0\) the solutions found strongly converge to solutions of the Schrödinger-Poisson system.

临界薛定谔-波普-波多尔斯基系统:半经典极限中的解决方案
在本文中,我们考虑以下临界薛定谔-波普-波多尔斯基系统 $$begin{aligned} {\left\{ \begin{array}{ll} -\epsilon ^2 \Delta u+ V(x)u+Q(x)\phi u=h(x,u)+K(x)\vert u \vert ^{4}u&{}\text{ in }- \Delta \phi + a^{2}\Delta ^{2}\phi = 4\pi Q(x) u^{2}&{}\text{ in }\mathbb {R}^3 \end{array}\right.}\其中 \(\varepsilon , a>0\) 是参数。函数 V、K、Q 满足适当的假设条件,非线性 h 也是次临界的。对于任意固定的\(a>0\),我们证明了半经典极限中 "小 "解的存在,即当\(\varepsilon \rightarrow 0\) 时。我们还给出了以\(\varepsilon \)表示的这种解的规范的估计值。此外,我们还证明了固定的\(\varepsilon \)适当小,当\(\arrow 0\) 所发现的解强烈地收敛于薛定谔-泊松系统的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信