Hypersurfaces of $$\mathbb {S}^2\times \mathbb {S}^2$$ with constant sectional curvature

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Haizhong Li, Luc Vrancken, Xianfeng Wang, Zeke Yao
{"title":"Hypersurfaces of $$\\mathbb {S}^2\\times \\mathbb {S}^2$$ with constant sectional curvature","authors":"Haizhong Li, Luc Vrancken, Xianfeng Wang, Zeke Yao","doi":"10.1007/s00526-024-02765-x","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we classify the hypersurfaces of <span>\\(\\mathbb {S}^2\\times \\mathbb {S}^2\\)</span> with constant sectional curvature. We prove that the constant sectional curvature can only be <span>\\(\\frac{1}{2}\\)</span>. We show that any such hypersurface is a parallel hypersurface of a minimal hypersurface in <span>\\(\\mathbb {S}^2\\times \\mathbb {S}^2\\)</span>, and we establish a one-to-one correspondence between such minimal hypersurface and the solution to the famous “sinh-Gordon equation” <span>\\( \\left( \\frac{\\partial ^2}{\\partial u^2}+\\frac{\\partial ^2}{\\partial v^2}\\right) h =-\\tfrac{1}{\\sqrt{2}}\\sinh \\left( \\sqrt{2}h\\right) \\)</span>. </p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-024-02765-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we classify the hypersurfaces of \(\mathbb {S}^2\times \mathbb {S}^2\) with constant sectional curvature. We prove that the constant sectional curvature can only be \(\frac{1}{2}\). We show that any such hypersurface is a parallel hypersurface of a minimal hypersurface in \(\mathbb {S}^2\times \mathbb {S}^2\), and we establish a one-to-one correspondence between such minimal hypersurface and the solution to the famous “sinh-Gordon equation” \( \left( \frac{\partial ^2}{\partial u^2}+\frac{\partial ^2}{\partial v^2}\right) h =-\tfrac{1}{\sqrt{2}}\sinh \left( \sqrt{2}h\right) \).

Abstract Image

具有恒定截面曲率的 $$\mathbb {S}^2\times\mathbb {S}^2$ 的超曲面
在本文中,我们对具有恒定截面曲率的 \(\mathbb {S}^2\times \mathbb {S}^2\) 超曲面进行了分类。我们证明恒定截面曲率只能是 \(\frac{1}{2}\)。我们证明任何这样的超曲面都是\(\mathbb {S}^2\times \mathbb {S}^2\)中最小超曲面的平行超曲面、并且我们在这样的最小超曲面和著名的 "正弦-戈登方程 "的解之间建立了一一对应的关系(\left( \frac{\partial ^2}{partial u^2}+\frac{\partial ^2}{partial v^2}\right) h =-\tfrac{1}{\sqrt{2}}\sinh \left( \sqrt{2}h\right) \)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信