A maximum rank theorem for solutions to the homogenous complex Monge–Ampère equation in a $$\mathbb {C}$$ -convex ring

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Jingchen Hu
{"title":"A maximum rank theorem for solutions to the homogenous complex Monge–Ampère equation in a $$\\mathbb {C}$$ -convex ring","authors":"Jingchen Hu","doi":"10.1007/s00526-024-02764-y","DOIUrl":null,"url":null,"abstract":"<p>Suppose <span>\\(\\Omega _0,\\Omega _1\\)</span> are two bounded strongly <span>\\(\\mathbb {C}\\)</span>-convex domains in <span>\\(\\mathbb {C}^n\\)</span>, with <span>\\(n\\ge 2\\)</span> and <span>\\(\\Omega _1\\supset \\overline{\\Omega _0}\\)</span>. Let <span>\\(\\mathcal {R}=\\Omega _1\\backslash \\overline{\\Omega _0}\\)</span>. We call <span>\\(\\mathcal {R}\\)</span> a <span>\\(\\mathbb {C}\\)</span>-convex ring. We will show that for a solution <span>\\(\\Phi \\)</span> to the homogenous complex Monge–Ampère equation in <span>\\(\\mathcal {R}\\)</span>, with <span>\\(\\Phi =1\\)</span> on <span>\\(\\partial \\Omega _1\\)</span> and <span>\\(\\Phi =0\\)</span> on <span>\\(\\partial \\Omega _0\\)</span>, <span>\\(\\sqrt{-1}\\partial {\\overline{\\partial }}\\Phi \\)</span> has rank <span>\\(n-1\\)</span> and the level sets of <span>\\(\\Phi \\)</span> are strongly <span>\\(\\mathbb {C}\\)</span>-convex.\n</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-024-02764-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Suppose \(\Omega _0,\Omega _1\) are two bounded strongly \(\mathbb {C}\)-convex domains in \(\mathbb {C}^n\), with \(n\ge 2\) and \(\Omega _1\supset \overline{\Omega _0}\). Let \(\mathcal {R}=\Omega _1\backslash \overline{\Omega _0}\). We call \(\mathcal {R}\) a \(\mathbb {C}\)-convex ring. We will show that for a solution \(\Phi \) to the homogenous complex Monge–Ampère equation in \(\mathcal {R}\), with \(\Phi =1\) on \(\partial \Omega _1\) and \(\Phi =0\) on \(\partial \Omega _0\), \(\sqrt{-1}\partial {\overline{\partial }}\Phi \) has rank \(n-1\) and the level sets of \(\Phi \) are strongly \(\mathbb {C}\)-convex.

Abstract Image

$$\mathbb{C}$$-凸环中同源复蒙日-安培方程解的最大秩定理
假设\(\Omega _0,\Omega _1\)是\(\mathbb {C}\)中的两个有界强\(\mathbb {C}^n\)-凸域,其中\(n\ge 2\) 和\(\Omega _1\supset \overline{\Omega _0}\)。让 \(\mathcal {R}=\Omega _1\backslash \overline{\Omega _0}\).我们称\(\mathcal {R}\)为\(\mathbb {C}\)-凸环。我们将证明,对于在\(\mathcal {R}\)中的同源复数蒙日-安培方程的解\(\Phi =1\) on \(\partial \Omega _1\) and\(\Phi =0\) on \(\partial \Omega _0\)、\(\sqrt{-1}\partial {\overline{\partial }}Phi \)有秩(n-1),并且(\Phi \)的水平集是强(\mathbb {C}\)-凸的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信