{"title":"A Liouville theorem for elliptic equations with a potential on infinite graphs","authors":"Stefano Biagi, Giulia Meglioli, Fabio Punzo","doi":"10.1007/s00526-024-02768-8","DOIUrl":null,"url":null,"abstract":"<p>We investigate the validity of the Liouville property for a class of elliptic equations with a potential, posed on infinite graphs. Under suitable assumptions on the graph and on the potential, we prove that the unique bounded solution is <span>\\(u\\equiv 0\\)</span>. We also show that on a special class of graphs the condition on the potential is optimal, in the sense that if it fails, then there exist infinitely many bounded solutions.</p>","PeriodicalId":9478,"journal":{"name":"Calculus of Variations and Partial Differential Equations","volume":"49 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Calculus of Variations and Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-024-02768-8","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate the validity of the Liouville property for a class of elliptic equations with a potential, posed on infinite graphs. Under suitable assumptions on the graph and on the potential, we prove that the unique bounded solution is \(u\equiv 0\). We also show that on a special class of graphs the condition on the potential is optimal, in the sense that if it fails, then there exist infinitely many bounded solutions.
期刊介绍:
Calculus of variations and partial differential equations are classical, very active, closely related areas of mathematics, with important ramifications in differential geometry and mathematical physics. In the last four decades this subject has enjoyed a flourishing development worldwide, which is still continuing and extending to broader perspectives.
This journal will attract and collect many of the important top-quality contributions to this field of research, and stress the interactions between analysts, geometers, and physicists. The field of Calculus of Variations and Partial Differential Equations is extensive; nonetheless, the journal will be open to all interesting new developments. Topics to be covered include:
- Minimization problems for variational integrals, existence and regularity theory for minimizers and critical points, geometric measure theory
- Variational methods for partial differential equations, optimal mass transportation, linear and nonlinear eigenvalue problems
- Variational problems in differential and complex geometry
- Variational methods in global analysis and topology
- Dynamical systems, symplectic geometry, periodic solutions of Hamiltonian systems
- Variational methods in mathematical physics, nonlinear elasticity, asymptotic variational problems, homogenization, capillarity phenomena, free boundary problems and phase transitions
- Monge-Ampère equations and other fully nonlinear partial differential equations related to problems in differential geometry, complex geometry, and physics.