{"title":"Morse index of concentrated solutions for the nonlinear Schrödinger equation with a very degenerate potential","authors":"Peng Luo, Kefan Pan, Shuangjie Peng","doi":"10.1007/s00526-024-02766-w","DOIUrl":null,"url":null,"abstract":"<p>We revisit the following nonlinear Schrödinger equation </p><span>$$\\begin{aligned} -\\varepsilon ^2\\Delta u+ V(x)u=u^{p},\\quad u>0,\\;\\; u\\in H^1({\\mathbb {R}}^N), \\end{aligned}$$</span><p>where <span>\\(\\varepsilon >0\\)</span> is a small parameter, <span>\\(N\\ge 2\\)</span> and <span>\\(1<p<2^*-1\\)</span>. It is known that the Morse index gives a strong qualitative information on the solutions, such as non-degeneracy, uniqueness, symmetries, singularities as well as classifying solutions. Here we compute the Morse index of positive <i>k</i>-peak solutions to above problem when the critical points of <i>V</i>(<i>x</i>) are non-isolated and degenerate. We also give a specific formula for the Morse index of <i>k</i>-peak solutions when the critical point set of <i>V</i>(<i>x</i>) is a low-dimensional ellipsoid. Our main difficulty comes from the non-uniform degeneracy of potential <i>V</i>(<i>x</i>). Our results generalize Grossi and Servadei’s work (Ann Math Pura Appl 186: 433–453, (2007)) to very degenerate (non-admissible) potentials and show that the structure of potentials highly affects the properties of concentrated solutions.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-024-02766-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
We revisit the following nonlinear Schrödinger equation
where \(\varepsilon >0\) is a small parameter, \(N\ge 2\) and \(1<p<2^*-1\). It is known that the Morse index gives a strong qualitative information on the solutions, such as non-degeneracy, uniqueness, symmetries, singularities as well as classifying solutions. Here we compute the Morse index of positive k-peak solutions to above problem when the critical points of V(x) are non-isolated and degenerate. We also give a specific formula for the Morse index of k-peak solutions when the critical point set of V(x) is a low-dimensional ellipsoid. Our main difficulty comes from the non-uniform degeneracy of potential V(x). Our results generalize Grossi and Servadei’s work (Ann Math Pura Appl 186: 433–453, (2007)) to very degenerate (non-admissible) potentials and show that the structure of potentials highly affects the properties of concentrated solutions.