{"title":"On the optimality and decay of p-Hardy weights on graphs","authors":"Florian Fischer","doi":"10.1007/s00526-024-02754-0","DOIUrl":null,"url":null,"abstract":"<p>We construct optimal Hardy weights to subcritical energy functionals <i>h</i> associated with quasilinear Schrödinger operators on infinite graphs. Here, optimality means that the weight <i>w</i> is the largest possible with respect to a partial ordering, and that the corresponding shifted energy functional <span>\\(h-w\\)</span> is null-critical. Moreover, we show a decay condition of Hardy weights in terms of their integrability with respect to certain integral weights. As an application of the decay condition, we show that null-criticality implies optimality near infinity. We also briefly discuss an uncertainty-type principle, a Rellich-type inequality and examples.</p>","PeriodicalId":9478,"journal":{"name":"Calculus of Variations and Partial Differential Equations","volume":"35 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Calculus of Variations and Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-024-02754-0","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We construct optimal Hardy weights to subcritical energy functionals h associated with quasilinear Schrödinger operators on infinite graphs. Here, optimality means that the weight w is the largest possible with respect to a partial ordering, and that the corresponding shifted energy functional \(h-w\) is null-critical. Moreover, we show a decay condition of Hardy weights in terms of their integrability with respect to certain integral weights. As an application of the decay condition, we show that null-criticality implies optimality near infinity. We also briefly discuss an uncertainty-type principle, a Rellich-type inequality and examples.
我们构建了与无限图上准线性薛定谔算子相关的亚临界能量函数 h 的最优哈代权重。在这里,最优性意味着权重 w 是相对于部分排序的最大权重,并且相应的移动能量函数 \(h-w\) 是空临界的。此外,我们还展示了哈代权重的衰减条件,即相对于某些积分权重的可积分性。作为衰减条件的应用,我们证明了空临界意味着无限附近的最优性。我们还简要讨论了不确定性类型原理、雷利克类型不等式和示例。
期刊介绍:
Calculus of variations and partial differential equations are classical, very active, closely related areas of mathematics, with important ramifications in differential geometry and mathematical physics. In the last four decades this subject has enjoyed a flourishing development worldwide, which is still continuing and extending to broader perspectives.
This journal will attract and collect many of the important top-quality contributions to this field of research, and stress the interactions between analysts, geometers, and physicists. The field of Calculus of Variations and Partial Differential Equations is extensive; nonetheless, the journal will be open to all interesting new developments. Topics to be covered include:
- Minimization problems for variational integrals, existence and regularity theory for minimizers and critical points, geometric measure theory
- Variational methods for partial differential equations, optimal mass transportation, linear and nonlinear eigenvalue problems
- Variational problems in differential and complex geometry
- Variational methods in global analysis and topology
- Dynamical systems, symplectic geometry, periodic solutions of Hamiltonian systems
- Variational methods in mathematical physics, nonlinear elasticity, asymptotic variational problems, homogenization, capillarity phenomena, free boundary problems and phase transitions
- Monge-Ampère equations and other fully nonlinear partial differential equations related to problems in differential geometry, complex geometry, and physics.