On the optimality and decay of p-Hardy weights on graphs

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Florian Fischer
{"title":"On the optimality and decay of p-Hardy weights on graphs","authors":"Florian Fischer","doi":"10.1007/s00526-024-02754-0","DOIUrl":null,"url":null,"abstract":"<p>We construct optimal Hardy weights to subcritical energy functionals <i>h</i> associated with quasilinear Schrödinger operators on infinite graphs. Here, optimality means that the weight <i>w</i> is the largest possible with respect to a partial ordering, and that the corresponding shifted energy functional <span>\\(h-w\\)</span> is null-critical. Moreover, we show a decay condition of Hardy weights in terms of their integrability with respect to certain integral weights. As an application of the decay condition, we show that null-criticality implies optimality near infinity. We also briefly discuss an uncertainty-type principle, a Rellich-type inequality and examples.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-024-02754-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We construct optimal Hardy weights to subcritical energy functionals h associated with quasilinear Schrödinger operators on infinite graphs. Here, optimality means that the weight w is the largest possible with respect to a partial ordering, and that the corresponding shifted energy functional \(h-w\) is null-critical. Moreover, we show a decay condition of Hardy weights in terms of their integrability with respect to certain integral weights. As an application of the decay condition, we show that null-criticality implies optimality near infinity. We also briefly discuss an uncertainty-type principle, a Rellich-type inequality and examples.

论图上 p-Hardy 权重的最优性和衰减性
我们构建了与无限图上准线性薛定谔算子相关的亚临界能量函数 h 的最优哈代权重。在这里,最优性意味着权重 w 是相对于部分排序的最大权重,并且相应的移动能量函数 \(h-w\) 是空临界的。此外,我们还展示了哈代权重的衰减条件,即相对于某些积分权重的可积分性。作为衰减条件的应用,我们证明了空临界意味着无限附近的最优性。我们还简要讨论了不确定性类型原理、雷利克类型不等式和示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信