On the critical exponent $$p_c$$ of the 3D quasilinear wave equation $$-\big (1+(\partial _t\phi )^p\big )\partial _t^2\phi +\Delta \phi =0$$ with short pulse initial data: II—shock formation

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Lu Yu, Yin Huicheng
{"title":"On the critical exponent $$p_c$$ of the 3D quasilinear wave equation $$-\\big (1+(\\partial _t\\phi )^p\\big )\\partial _t^2\\phi +\\Delta \\phi =0$$ with short pulse initial data: II—shock formation","authors":"Lu Yu, Yin Huicheng","doi":"10.1007/s00526-024-02753-1","DOIUrl":null,"url":null,"abstract":"<p>In the previous paper (Ding et al. in J Differ Equ 385:183–253, 2024), for the 3D quasilinear wave equation <span>\\(-\\big (1+(\\partial _t\\phi )^p\\big )\\partial _t^2\\phi +\\Delta \\phi =0\\)</span> with short pulse initial data <span>\\((\\phi ,\\partial _t\\phi )(1,x)=\\big (\\delta ^{2-\\varepsilon _{0}}\\phi _0 (\\frac{r-1}{\\delta },\\omega ),\\delta ^{1-\\varepsilon _{0}}\\phi _1(\\frac{r-1}{\\delta },\\omega )\\big )\\)</span>, where <span>\\(p\\in \\mathbb {N}\\)</span>, <span>\\(0&lt;\\varepsilon _{0}&lt;1\\)</span>, under the outgoing constraint condition <span>\\((\\partial _t+\\partial _r)^k\\phi (1,x)=O(\\delta ^{2-\\varepsilon _{0}-k\\max \\{0,1-(1-\\varepsilon _{0})p\\}})\\)</span> for <span>\\(k=1,2\\)</span>, the authors establish the global existence of smooth large solution <span>\\(\\phi \\)</span> when <span>\\(p&gt;p_c\\)</span> with <span>\\(p_c=\\frac{1}{1-\\varepsilon _{0}}\\)</span>. In the present paper, under the same outgoing constraint condition, when <span>\\(1\\le p\\le p_c\\)</span>, we will show that the smooth solution <span>\\(\\phi \\)</span> may blow up and further the outgoing shock is formed in finite time.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-024-02753-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In the previous paper (Ding et al. in J Differ Equ 385:183–253, 2024), for the 3D quasilinear wave equation \(-\big (1+(\partial _t\phi )^p\big )\partial _t^2\phi +\Delta \phi =0\) with short pulse initial data \((\phi ,\partial _t\phi )(1,x)=\big (\delta ^{2-\varepsilon _{0}}\phi _0 (\frac{r-1}{\delta },\omega ),\delta ^{1-\varepsilon _{0}}\phi _1(\frac{r-1}{\delta },\omega )\big )\), where \(p\in \mathbb {N}\), \(0<\varepsilon _{0}<1\), under the outgoing constraint condition \((\partial _t+\partial _r)^k\phi (1,x)=O(\delta ^{2-\varepsilon _{0}-k\max \{0,1-(1-\varepsilon _{0})p\}})\) for \(k=1,2\), the authors establish the global existence of smooth large solution \(\phi \) when \(p>p_c\) with \(p_c=\frac{1}{1-\varepsilon _{0}}\). In the present paper, under the same outgoing constraint condition, when \(1\le p\le p_c\), we will show that the smooth solution \(\phi \) may blow up and further the outgoing shock is formed in finite time.

关于具有短脉冲初始数据的三维准线性波方程 $$-\big (1+(\partial _t\phi )^p\big )\partial _t^2\phi +\Delta \phi =0$$ 的临界指数 $$p_c$$:II-shock formation
在上一篇论文(Ding et al.in J Differ Equ 385:183-253, 2024),对于具有短脉冲初始数据的三维准线性波方程 \(-\big (1+(\partial _t\phi )^p\big )\partial _t^2\phi +\Delta \phi =0\) (((\phi ,\partial _t\phi )(1、x)=\big (\delta ^{2-\varepsilon _{0}}\phi _0 (\frac{r-1}{\delta },\omega ),\delta ^{1-\varepsilon _{0}}\phi _1(\frac{r-1}{\delta },\omega )\big )\), where\(p\in \mathbb {N}\),\(0<;\varepsilon _{0}<;1), under the outgoing constraint condition \((\partial _t+\partial _r)^k\phi (1,x)=O(\delta ^{2-\varepsilon _{0}-k\max \{0,1-(1-\varepsilon _{0})p}})\) for\(k=1,2\), the authors establish the global existence of smooth large solution \(\phi \) when \(p>;p_c\) with \(p_c=\frac{1}{1-\varepsilon _{0}}\).在本文中,在相同的流出约束条件下,当 \(1\le p\le p_c\) 时,我们将证明平稳解 \(\phi \) 可能会破裂,并在有限的时间内进一步形成流出冲击。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信