The High-Order Corrections of Discrete Harmonic Measures and Their Correction Constants

IF 1.3 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Yixiang Wang, Kainan Xiang, Shangjie Yang, Lang Zou
{"title":"The High-Order Corrections of Discrete Harmonic Measures and Their Correction Constants","authors":"Yixiang Wang,&nbsp;Kainan Xiang,&nbsp;Shangjie Yang,&nbsp;Lang Zou","doi":"10.1007/s10955-024-03292-x","DOIUrl":null,"url":null,"abstract":"<div><p>By the dimension reduction idea, overshoot for random walks, coupling and martingale arguments, we obtain a simpler and easily computable expression for the first-order correction constant between discrete harmonic measures for random walks with rotationally invariant step distribution in <span>\\(\\mathbb {R}^d\\ (d\\ge 2)\\)</span> and the corresponding continuous counterparts. This confirms and extends a conjecture in Jiang and Kennedy (J Theor Probab 30(4):1424–1444, 2017), and simplifies the related expression of Wang et al. (Bernoulli 25(3):2279–2300, 2019). Furthermore, we propose a universality conjecture on high-order corrections for error estimation between generalized discrete harmonic measures and their continuous counterparts, which generalizes the universality conjecture of the first-order correction in Kennedy (J Stat Phys 164(1):174–189, 2016); and we prove this conjecture heuristically for the rotationally invariant case, and also provide several examples of second-order error corrections to check the conjecture by a numerical simulation argument.</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":"191 7","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-024-03292-x","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

By the dimension reduction idea, overshoot for random walks, coupling and martingale arguments, we obtain a simpler and easily computable expression for the first-order correction constant between discrete harmonic measures for random walks with rotationally invariant step distribution in \(\mathbb {R}^d\ (d\ge 2)\) and the corresponding continuous counterparts. This confirms and extends a conjecture in Jiang and Kennedy (J Theor Probab 30(4):1424–1444, 2017), and simplifies the related expression of Wang et al. (Bernoulli 25(3):2279–2300, 2019). Furthermore, we propose a universality conjecture on high-order corrections for error estimation between generalized discrete harmonic measures and their continuous counterparts, which generalizes the universality conjecture of the first-order correction in Kennedy (J Stat Phys 164(1):174–189, 2016); and we prove this conjecture heuristically for the rotationally invariant case, and also provide several examples of second-order error corrections to check the conjecture by a numerical simulation argument.

Abstract Image

Abstract Image

离散谐波量的高阶修正及其修正常数
通过降维思想、随机游走的超调、耦合和马丁格尔论证,我们得到了在\(\mathbb {R}^d\ (d\ge 2)\)中具有旋转不变步长分布的随机游走的离散谐波对策与相应连续对策之间的一阶修正常数的一个更简单且易于计算的表达式。这证实并扩展了 Jiang 和 Kennedy (J Theor Probab 30(4):1424-1444, 2017) 的猜想,并简化了 Wang 等人 (Bernoulli 25(3):2279-2300, 2019) 的相关表达式。此外,我们提出了广义离散调和度量与其连续对应度量之间误差估计的高阶修正的普遍性猜想,该猜想概括了 Kennedy (J Stat Phys 164(1):174-189, 2016) 中一阶修正的普遍性猜想;我们启发式地证明了旋转不变情况下的这一猜想,还提供了几个二阶误差修正的例子,通过数值模拟论证检验了这一猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Statistical Physics
Journal of Statistical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
12.50%
发文量
152
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信