Connectedness and Compactness via Subspace Mixed M-Topologies

IF 0.8 4区 综合性期刊 Q3 MULTIDISCIPLINARY SCIENCES
Md Mirazul Hoque, Baby Bhattacharya, Binod Chandra Tripathy
{"title":"Connectedness and Compactness via Subspace Mixed M-Topologies","authors":"Md Mirazul Hoque,&nbsp;Baby Bhattacharya,&nbsp;Binod Chandra Tripathy","doi":"10.1007/s40010-024-00884-w","DOIUrl":null,"url":null,"abstract":"<div><p>In the present article, we present how M-connectedness differs from similar concepts in general topology, and the notion of closed subspace mixed M-topology in mixed M-topological space by extending the concept of closed subspace M-topology. We also define the notions of M-connectedness and M-compactness on mixed M-topological spaces. We investigate different properties of M-connectedness and M-compactness via two subspace mixed M-topologies.</p></div>","PeriodicalId":744,"journal":{"name":"Proceedings of the National Academy of Sciences, India Section A: Physical Sciences","volume":"94 3","pages":"335 - 343"},"PeriodicalIF":0.8000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40010-024-00884-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences, India Section A: Physical Sciences","FirstCategoryId":"103","ListUrlMain":"https://link.springer.com/article/10.1007/s40010-024-00884-w","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In the present article, we present how M-connectedness differs from similar concepts in general topology, and the notion of closed subspace mixed M-topology in mixed M-topological space by extending the concept of closed subspace M-topology. We also define the notions of M-connectedness and M-compactness on mixed M-topological spaces. We investigate different properties of M-connectedness and M-compactness via two subspace mixed M-topologies.

通过子空间混合 M 拓扑实现连通性和紧凑性
在本文中,我们介绍了 M-连通性与一般拓扑学中类似概念的不同之处,并通过扩展封闭子空间 M 拓扑的概念,介绍了混合 M 拓扑空间中封闭子空间混合 M 拓扑的概念。我们还定义了混合 M 拓扑空间的 M-connectedness 和 M-compactness 概念。我们通过两个子空间混合 M 拓扑来研究 M-connectedness 和 M-compactness 的不同性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
37
审稿时长
>12 weeks
期刊介绍: To promote research in all the branches of Science & Technology; and disseminate the knowledge and advancements in Science & Technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信