Representations of the cyclotomic oriented Brauer-Clifford supercategory

Pub Date : 2024-07-03 DOI:10.1016/j.jpaa.2024.107767
Mengmeng Gao, Hebing Rui, Linliang Song
{"title":"Representations of the cyclotomic oriented Brauer-Clifford supercategory","authors":"Mengmeng Gao,&nbsp;Hebing Rui,&nbsp;Linliang Song","doi":"10.1016/j.jpaa.2024.107767","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mi>k</mi></math></span> be an algebraically closed field with characteristic <em>p</em> different from 2. We generalize the notion of a weakly triangular decomposition in <span>[7]</span> to the super case called a super weakly triangular decomposition. We show that the underlying even category of locally finite-dimensional left <em>A</em>-supermodules is an upper finite fully stratified category in the sense of <span>[6, Definition 3.34]</span> if the superalgebra <em>A</em> admits an upper finite super weakly triangular decomposition. In particular, when <em>A</em> is the locally unital superalgebra associated with the cyclotomic oriented Brauer-Clifford supercategory in <span>[1]</span>, the Grothendieck group of the category of left <em>A</em>-supermodules admitting finite standard flags has a <span><math><mi>g</mi></math></span>-module structure that is isomorphic to the tensor product of an integrable lowest weight and an integrable highest weight <span><math><mi>g</mi></math></span>-module, where <span><math><mi>g</mi></math></span> is the complex Kac-Moody Lie algebra of type <span><math><msubsup><mrow><mi>A</mi></mrow><mrow><mn>2</mn><mi>ℓ</mi></mrow><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></msubsup></math></span> (resp., <span><math><msub><mrow><mi>B</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span>) if <span><math><mi>p</mi><mo>=</mo><mn>2</mn><mi>ℓ</mi><mo>+</mo><mn>1</mn></math></span> (resp., <span><math><mi>p</mi><mo>=</mo><mn>0</mn></math></span>).</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404924001646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let k be an algebraically closed field with characteristic p different from 2. We generalize the notion of a weakly triangular decomposition in [7] to the super case called a super weakly triangular decomposition. We show that the underlying even category of locally finite-dimensional left A-supermodules is an upper finite fully stratified category in the sense of [6, Definition 3.34] if the superalgebra A admits an upper finite super weakly triangular decomposition. In particular, when A is the locally unital superalgebra associated with the cyclotomic oriented Brauer-Clifford supercategory in [1], the Grothendieck group of the category of left A-supermodules admitting finite standard flags has a g-module structure that is isomorphic to the tensor product of an integrable lowest weight and an integrable highest weight g-module, where g is the complex Kac-Moody Lie algebra of type A2(2) (resp., B) if p=2+1 (resp., p=0).

分享
查看原文
环向布劳尔-克利福德超范畴的表征
我们把弱三角形分解的概念概括为超情形,称为超弱三角形分解。我们证明,如果上代数允许上有限超弱三角形分解,那么局部有限维左-上模子的底层偶数范畴就是上有限全分层范畴。具体地说,当 是与循环定向布劳尔-克利福德超范畴相关联的局部单整超代数时,允 许有限标准旗的左-上模子范畴的格罗内迪克群有一个-模子结构,它与可整型最低权重和可整型最高权重-模子的张量积同构,其中是复 Kac-Moody Lie 代数类型(resp. , ),如果(resp. , )。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信