Weak Z-structures for some combinatorial group constructions

Pub Date : 2024-06-27 DOI:10.1016/j.jpaa.2024.107761
M. Cárdenas, F.F. Lasheras, A. Quintero
{"title":"Weak Z-structures for some combinatorial group constructions","authors":"M. Cárdenas,&nbsp;F.F. Lasheras,&nbsp;A. Quintero","doi":"10.1016/j.jpaa.2024.107761","DOIUrl":null,"url":null,"abstract":"<div><p>Bestvina <span>[1]</span> introduced the notion of a (weak) <span><math><mi>Z</mi></math></span>-structure and (weak) <span><math><mi>Z</mi></math></span>-boundary for a torsion-free group, motivated by the notion of boundary for hyperbolic and <span><math><mi>C</mi><mi>A</mi><mi>T</mi><mo>(</mo><mn>0</mn><mo>)</mo></math></span> groups. Since then, some classes of groups have been shown to admit a (weak) <span><math><mi>Z</mi></math></span>-structure (see <span>[5]</span>, <span>[20]</span>, <span>[22]</span> for example); in fact, in all cases these groups are semistable at infinity and happen to have a pro-(finitely generated free) fundamental pro-group. The question whether or not every type <span><math><mi>F</mi></math></span> group admits such a structure remains open. In <span>[33]</span> it was shown that the property of admitting such a structure is closed under direct products and free products. Our main results are as follows.</p><p>THEOREM: Let <em>G</em> be a torsion-free and semistable at infinity finitely presented group with a pro-(finitely generated free) fundamental pro-group at each end. If <em>G</em> has a finite graph of groups decomposition in which all the groups involved are of type <span><math><mi>F</mi></math></span> and inward tame (in particular, if they all admit a weak <span><math><mi>Z</mi></math></span>-structure) then <em>G</em> admits a weak <span><math><mi>Z</mi></math></span>-structure.</p><p>COROLLARY: The class of those 1-ended and semistable at infinity torsion-free finitely presented groups which admit a weak <span><math><mi>Z</mi></math></span>-structure and have a pro-(finitely generated free) fundamental pro-group is closed under amalgamated products (resp. HNN-extensions) over finitely generated free groups.</p><p>On the other hand, given a finitely presented group <em>G</em> and a monomorphism <span><math><mi>φ</mi><mo>:</mo><mi>G</mi><mo>⟶</mo><mi>G</mi></math></span>, we may consider the ascending HNN-extension <span><math><mi>G</mi><msub><mrow><mo>⁎</mo></mrow><mrow><mi>φ</mi></mrow></msub><mo>=</mo><mo>〈</mo><mi>G</mi><mo>,</mo><mi>t</mi><mspace></mspace><mo>;</mo><mspace></mspace><msup><mrow><mi>t</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mi>g</mi><mi>t</mi><mo>=</mo><mi>φ</mi><mo>(</mo><mi>g</mi><mo>)</mo><mo>,</mo><mi>g</mi><mo>∈</mo><mi>G</mi><mo>〉</mo></math></span>. The results in <span>[26]</span> together with the Theorem above yield the following:</p><p>PROPOSITION: If a finitely presented torsion-free group <em>G</em> is of type <span><math><mi>F</mi></math></span> and inward tame, then any (1-ended) ascending HNN-extension <span><math><mi>G</mi><msub><mrow><mo>⁎</mo></mrow><mrow><mi>φ</mi></mrow></msub></math></span> admits a weak <span><math><mi>Z</mi></math></span>-structure.</p><p>In the particular case <span><math><mi>φ</mi><mo>∈</mo><mi>A</mi><mi>u</mi><mi>t</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, this ascending HNN-extension corresponds to a semidirect product <span><math><mi>G</mi><msub><mrow><mo>⋊</mo></mrow><mrow><mi>φ</mi></mrow></msub><mi>Z</mi></math></span>, and it has been shown in <span>[18]</span> that if <em>G</em> admits a <span><math><mi>Z</mi></math></span>-structure then so does <span><math><mi>G</mi><msub><mrow><mo>⋊</mo></mrow><mrow><mi>φ</mi></mrow></msub><mi>Z</mi></math></span>.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404924001580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Bestvina [1] introduced the notion of a (weak) Z-structure and (weak) Z-boundary for a torsion-free group, motivated by the notion of boundary for hyperbolic and CAT(0) groups. Since then, some classes of groups have been shown to admit a (weak) Z-structure (see [5], [20], [22] for example); in fact, in all cases these groups are semistable at infinity and happen to have a pro-(finitely generated free) fundamental pro-group. The question whether or not every type F group admits such a structure remains open. In [33] it was shown that the property of admitting such a structure is closed under direct products and free products. Our main results are as follows.

THEOREM: Let G be a torsion-free and semistable at infinity finitely presented group with a pro-(finitely generated free) fundamental pro-group at each end. If G has a finite graph of groups decomposition in which all the groups involved are of type F and inward tame (in particular, if they all admit a weak Z-structure) then G admits a weak Z-structure.

COROLLARY: The class of those 1-ended and semistable at infinity torsion-free finitely presented groups which admit a weak Z-structure and have a pro-(finitely generated free) fundamental pro-group is closed under amalgamated products (resp. HNN-extensions) over finitely generated free groups.

On the other hand, given a finitely presented group G and a monomorphism φ:GG, we may consider the ascending HNN-extension Gφ=G,t;t1gt=φ(g),gG. The results in [26] together with the Theorem above yield the following:

PROPOSITION: If a finitely presented torsion-free group G is of type F and inward tame, then any (1-ended) ascending HNN-extension Gφ admits a weak Z-structure.

In the particular case φAut(G), this ascending HNN-extension corresponds to a semidirect product GφZ, and it has been shown in [18] that if G admits a Z-structure then so does GφZ.

分享
查看原文
一些组合群构造的弱[公式省略]结构
贝斯特维纳受双曲和群的边界概念的启发,提出了无扭群的(弱)结构和(弱)边界的概念。从那时起,一些类群被证明具有(弱)结构(例如见);事实上,在所有情况下,这些群在无穷远处都是半稳态的,并且恰好有一个原(有限生成的自由)基本原群。至于是否每个类型群都有这样的结构,这个问题仍然悬而未决。有研究表明,在直接积和自由积的作用下,接纳这种结构的性质是封闭的。我们的主要结果如下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信