Green Sonochemical Synthesis of rGO Nanosheets‐Decorated by SnO2 Nanoparticles for Nitrogen Gas‐Sensing Applications

IF 1.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Kiruthika Sundaramoorthi, Uma Jagadesan, Balraj Baskaran, Siva Chidambaram
{"title":"Green Sonochemical Synthesis of rGO Nanosheets‐Decorated by SnO2 Nanoparticles for Nitrogen Gas‐Sensing Applications","authors":"Kiruthika Sundaramoorthi, Uma Jagadesan, Balraj Baskaran, Siva Chidambaram","doi":"10.1002/pssa.202400267","DOIUrl":null,"url":null,"abstract":"In recent years, the development of efficient and environmentally friendly synthesis methods for nanomaterials has gained significant attention in various research fields, particularly in gas‐sensing applications. Among these methods, ultrasonic synthesis stands out for its simplicity, cost‐effectiveness, and ecofriendly nature. Herein, a simple and green ultrasonic synthesis process is used to synthesize the SnO<jats:sub>2</jats:sub> nanoparticles‐decorated rGO nanosheets. The obtained X‐ray diffraction reveals the tetragonal rutile‐type crystal structure. The transmission electron microscopy images reveal the decoration of SnO<jats:sub>2</jats:sub> nanoparticles on the surfaces of the rGO sheets. SnO<jats:sub>2</jats:sub> nanoparticles of size 4–8 nm are identified on the surfaces of the rGO sheets. Furthermore, the optical absorbance and photoluminescence spectra of the nanocomposites validate charge migrations occurring at the interface of SnO<jats:sub>2</jats:sub> and the rGO sheets. Compared to the pristine SnO<jats:sub>2</jats:sub> nanoparticles, the green ultrasonically synthesized SnO<jats:sub>2</jats:sub> nanoparticles‐decorated SnO<jats:sub>2</jats:sub>/rGO nanocomposite exhibits better sensing performance against NO<jats:sub>2</jats:sub> gas and shows selectivity for NO<jats:sub>2</jats:sub> gas at 200 °C. The SnO<jats:sub>2</jats:sub>/rGO nanocomposite demonstrates high NO<jats:sub>2</jats:sub> sensing with appealing sensing properties such as excellent responsiveness (67% at 400 °C), rapid reaction time (18 s), and short recovery time (25 s).","PeriodicalId":20074,"journal":{"name":"Physica Status Solidi A-applications and Materials Science","volume":"13 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Status Solidi A-applications and Materials Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/pssa.202400267","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, the development of efficient and environmentally friendly synthesis methods for nanomaterials has gained significant attention in various research fields, particularly in gas‐sensing applications. Among these methods, ultrasonic synthesis stands out for its simplicity, cost‐effectiveness, and ecofriendly nature. Herein, a simple and green ultrasonic synthesis process is used to synthesize the SnO2 nanoparticles‐decorated rGO nanosheets. The obtained X‐ray diffraction reveals the tetragonal rutile‐type crystal structure. The transmission electron microscopy images reveal the decoration of SnO2 nanoparticles on the surfaces of the rGO sheets. SnO2 nanoparticles of size 4–8 nm are identified on the surfaces of the rGO sheets. Furthermore, the optical absorbance and photoluminescence spectra of the nanocomposites validate charge migrations occurring at the interface of SnO2 and the rGO sheets. Compared to the pristine SnO2 nanoparticles, the green ultrasonically synthesized SnO2 nanoparticles‐decorated SnO2/rGO nanocomposite exhibits better sensing performance against NO2 gas and shows selectivity for NO2 gas at 200 °C. The SnO2/rGO nanocomposite demonstrates high NO2 sensing with appealing sensing properties such as excellent responsiveness (67% at 400 °C), rapid reaction time (18 s), and short recovery time (25 s).
利用二氧化硫纳米粒子对氮气传感应用中的 rGO 纳米片进行绿色声化学合成
近年来,高效、环保的纳米材料合成方法的开发在各个研究领域,尤其是气体传感应用领域受到极大关注。在这些方法中,超声合成以其简单、成本效益高和生态友好的特点脱颖而出。本文采用简单、绿色的超声合成工艺合成了SnO2纳米颗粒装饰的rGO纳米片。所获得的 X 射线衍射图显示了四方金红石型晶体结构。透射电子显微镜图像显示了 rGO 片表面的二氧化锡纳米粒子装饰。在 rGO 片材表面发现了尺寸为 4-8 纳米的 SnO2 纳米颗粒。此外,纳米复合材料的光吸收和光致发光光谱验证了二氧化锡和 rGO 片材界面上发生的电荷迁移。与原始的 SnO2 纳米粒子相比,绿色超声合成的 SnO2 纳米粒子装饰的 SnO2/rGO 纳米复合材料对二氧化氮气体具有更好的传感性能,在 200 °C 下对二氧化氮气体具有选择性。SnO2/rGO 纳米复合材料具有很高的二氧化氮传感性能,同时还具有极佳的响应性(400 ℃ 时为 67%)、快速反应时间(18 秒)和较短的恢复时间(25 秒)等吸引人的传感特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.70
自引率
5.00%
发文量
393
审稿时长
2 months
期刊介绍: The physica status solidi (pss) journal group is devoted to the thorough peer review and the rapid publication of new and important results in all fields of solid state and materials physics, from basic science to applications and devices. Among the largest and most established international publications, the pss journals publish reviews, letters and original articles, as regular content as well as in special issues and topical sections.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信