Heng Chen, Zhenhua Chen, Liwen Hu, Fengzhu Tang, Dan Kuang, Jiayi Han, Yao Wang, Xiao Zhang, Yue Cheng, Jiantong Meng, Rong Lu, Lan Zhang
{"title":"Application of wastewater-based epidemiological monitoring of COVID-19 for disease surveillance in the city","authors":"Heng Chen, Zhenhua Chen, Liwen Hu, Fengzhu Tang, Dan Kuang, Jiayi Han, Yao Wang, Xiao Zhang, Yue Cheng, Jiantong Meng, Rong Lu, Lan Zhang","doi":"10.1007/s11783-024-1858-6","DOIUrl":null,"url":null,"abstract":"<p>Wastewater-based surveillance serves as a supplementary approach to clinical surveillance of COVID-19 during the epidemic. This study aimed to track the prevalence of the disease and the viral genetic variability through wastewater-based surveillance in the post-epidemic era. Between January to December 2023, samples were collected from the influent lines of two wastewater treatment plants (WWTPs), concentrated using PEG8000, and subjected to detection of the target genes ORF 1ab and N of SARS-CoV-2 via reverse transcriptional quantitative PCR (RT-qPCR). For next-generation sequencing (NGS), high-quality samples from both wastewater and clinical patients were selected. Weekly analysis were performed using R software to evaluate the correlation between the SARS-CoV-2 RNA concentrations in wastewater and positive rate of reported cases, indicating a positive correlation. Genetic diversity patterns of SARS-CoV-2 in wastewater resembled those in the patient source based on Principal Coordinates Analysis (PCoA) with three clusters for different stages. The rise of RNA concentration in wastewater indicates the growth of cases and the emergence of new variants, serving as an early warning of potential viral mutations, disease outbreaks even possible epidemics. Furthermore, the genomic surveillance of wastewater could help identify new variants that may not be captured through population monitoring, especially when sample sizes are insufficient. Consequently, surveillance of SARS-CoV-2 in municipal wastewater has emerged as a reliable, early-warning monitoring system for COVID-19 in the post-epidemic era.\n</p>","PeriodicalId":12720,"journal":{"name":"Frontiers of Environmental Science & Engineering","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Environmental Science & Engineering","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s11783-024-1858-6","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Wastewater-based surveillance serves as a supplementary approach to clinical surveillance of COVID-19 during the epidemic. This study aimed to track the prevalence of the disease and the viral genetic variability through wastewater-based surveillance in the post-epidemic era. Between January to December 2023, samples were collected from the influent lines of two wastewater treatment plants (WWTPs), concentrated using PEG8000, and subjected to detection of the target genes ORF 1ab and N of SARS-CoV-2 via reverse transcriptional quantitative PCR (RT-qPCR). For next-generation sequencing (NGS), high-quality samples from both wastewater and clinical patients were selected. Weekly analysis were performed using R software to evaluate the correlation between the SARS-CoV-2 RNA concentrations in wastewater and positive rate of reported cases, indicating a positive correlation. Genetic diversity patterns of SARS-CoV-2 in wastewater resembled those in the patient source based on Principal Coordinates Analysis (PCoA) with three clusters for different stages. The rise of RNA concentration in wastewater indicates the growth of cases and the emergence of new variants, serving as an early warning of potential viral mutations, disease outbreaks even possible epidemics. Furthermore, the genomic surveillance of wastewater could help identify new variants that may not be captured through population monitoring, especially when sample sizes are insufficient. Consequently, surveillance of SARS-CoV-2 in municipal wastewater has emerged as a reliable, early-warning monitoring system for COVID-19 in the post-epidemic era.
期刊介绍:
Frontiers of Environmental Science & Engineering (FESE) is an international journal for researchers interested in a wide range of environmental disciplines. The journal''s aim is to advance and disseminate knowledge in all main branches of environmental science & engineering. The journal emphasizes papers in developing fields, as well as papers showing the interaction between environmental disciplines and other disciplines.
FESE is a bi-monthly journal. Its peer-reviewed contents consist of a broad blend of reviews, research papers, policy analyses, short communications, and opinions. Nonscheduled “special issue” and "hot topic", including a review article followed by a couple of related research articles, are organized to publish novel contributions and breaking results on all aspects of environmental field.