Wooyeon Kim, Jian Cheng, Joonwon Choi, Seoyeong Lee, Yongwoo Lee, Doyeon Lee, Min Jae Ko
{"title":"Ultrathin Glass-Based Perovskite Solar Cells Employing Bilayer Electron Transport Layer","authors":"Wooyeon Kim, Jian Cheng, Joonwon Choi, Seoyeong Lee, Yongwoo Lee, Doyeon Lee, Min Jae Ko","doi":"10.1007/s11814-024-00213-2","DOIUrl":null,"url":null,"abstract":"<p>In recent studies, flexible perovskite solar cells (PSCs) have exhibited high power conversion efficiency (PCE) coupled with remarkable mechanical stability. However, the conventional polymer substrates used in flexible PSCs possess high permeability to moisture and oxygen, leading to the rapid degradation of perovskite materials. In this work, we address these issues by employing ultrathin glass (UTG) substrates, which provide moisture impermeability while retaining flexibility. Additionally, we introduce a strategically designed SnO<sub>2</sub>/TiO<sub>2</sub> bilayer as the electron transport layer (ETL). Our results reveal that PSCs incorporating the bilayer ETL achieve higher PCE than those with a monolayer ETL on conventional glass and UTG substrates. Furthermore, moisture permeability tests demonstrate that PSCs based on UTG substrates sustain their PCE over time, compared to their polymer-based counterparts. These results imply that UTG substrates, combined with a SnO<sub>2</sub>/TiO<sub>2</sub> bilayer ETL, offer a promising solution for developing durable, high-performance, flexible PSCs suitable for long-term applications.</p>","PeriodicalId":684,"journal":{"name":"Korean Journal of Chemical Engineering","volume":"39 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11814-024-00213-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In recent studies, flexible perovskite solar cells (PSCs) have exhibited high power conversion efficiency (PCE) coupled with remarkable mechanical stability. However, the conventional polymer substrates used in flexible PSCs possess high permeability to moisture and oxygen, leading to the rapid degradation of perovskite materials. In this work, we address these issues by employing ultrathin glass (UTG) substrates, which provide moisture impermeability while retaining flexibility. Additionally, we introduce a strategically designed SnO2/TiO2 bilayer as the electron transport layer (ETL). Our results reveal that PSCs incorporating the bilayer ETL achieve higher PCE than those with a monolayer ETL on conventional glass and UTG substrates. Furthermore, moisture permeability tests demonstrate that PSCs based on UTG substrates sustain their PCE over time, compared to their polymer-based counterparts. These results imply that UTG substrates, combined with a SnO2/TiO2 bilayer ETL, offer a promising solution for developing durable, high-performance, flexible PSCs suitable for long-term applications.
期刊介绍:
The Korean Journal of Chemical Engineering provides a global forum for the dissemination of research in chemical engineering. The Journal publishes significant research results obtained in the Asia-Pacific region, and simultaneously introduces recent technical progress made in other areas of the world to this region. Submitted research papers must be of potential industrial significance and specifically concerned with chemical engineering. The editors will give preference to papers having a clearly stated practical scope and applicability in the areas of chemical engineering, and to those where new theoretical concepts are supported by new experimental details. The Journal also regularly publishes featured reviews on emerging and industrially important subjects of chemical engineering as well as selected papers presented at international conferences on the subjects.