{"title":"Boundary parameter matching for isogeometric analysis using Schwarz–Christoffel mapping","authors":"Ye Ji, Matthias Möller, Yingying Yu, Chungang Zhu","doi":"10.1007/s00366-024-02020-z","DOIUrl":null,"url":null,"abstract":"<p>Isogeometric analysis has brought a paradigm shift in integrating computational simulations with geometric designs across engineering disciplines. This technique necessitates analysis-suitable parameterization of physical domains to fully harness the synergy between Computer-Aided Design and Computer-Aided Engineering analyses. Existing methods often fix boundary parameters, leading to challenges in elongated geometries such as fluid channels and tubular reactors. This paper presents an innovative solution for the boundary parameter matching problem, specifically designed for analysis-suitable parameterizations. We employ a sophisticated Schwarz–Christoffel mapping technique, which is instrumental in computing boundary correspondences. A refined boundary curve reparameterization process complements this. Our dual-strategy approach maintains the geometric exactness and continuity of input physical domains, overcoming limitations often encountered with the existing reparameterization techniques. By employing our proposed boundary parameter matching method, we show that even a simple linear interpolation approach can effectively construct a satisfactory analysis-suitable parameterization. Our methodology offers significant improvements over traditional practices, enabling the generation of analysis-suitable and geometrically precise models, which is crucial for ensuring accurate simulation results. Numerical experiments show the capacity of the proposed method to enhance the quality and reliability of isogeometric analysis workflows.</p>","PeriodicalId":11696,"journal":{"name":"Engineering with Computers","volume":"8 1","pages":""},"PeriodicalIF":8.7000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering with Computers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00366-024-02020-z","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
Isogeometric analysis has brought a paradigm shift in integrating computational simulations with geometric designs across engineering disciplines. This technique necessitates analysis-suitable parameterization of physical domains to fully harness the synergy between Computer-Aided Design and Computer-Aided Engineering analyses. Existing methods often fix boundary parameters, leading to challenges in elongated geometries such as fluid channels and tubular reactors. This paper presents an innovative solution for the boundary parameter matching problem, specifically designed for analysis-suitable parameterizations. We employ a sophisticated Schwarz–Christoffel mapping technique, which is instrumental in computing boundary correspondences. A refined boundary curve reparameterization process complements this. Our dual-strategy approach maintains the geometric exactness and continuity of input physical domains, overcoming limitations often encountered with the existing reparameterization techniques. By employing our proposed boundary parameter matching method, we show that even a simple linear interpolation approach can effectively construct a satisfactory analysis-suitable parameterization. Our methodology offers significant improvements over traditional practices, enabling the generation of analysis-suitable and geometrically precise models, which is crucial for ensuring accurate simulation results. Numerical experiments show the capacity of the proposed method to enhance the quality and reliability of isogeometric analysis workflows.
期刊介绍:
Engineering with Computers is an international journal dedicated to simulation-based engineering. It features original papers and comprehensive reviews on technologies supporting simulation-based engineering, along with demonstrations of operational simulation-based engineering systems. The journal covers various technical areas such as adaptive simulation techniques, engineering databases, CAD geometry integration, mesh generation, parallel simulation methods, simulation frameworks, user interface technologies, and visualization techniques. It also encompasses a wide range of application areas where engineering technologies are applied, spanning from automotive industry applications to medical device design.