{"title":"Influence of rainfall changes from 4.6 to 3.0 ka BP on ceramic pipes","authors":"Shuaiqi Wang, Xiangyu Zhu, Ye Tian","doi":"10.1186/s40494-024-01337-8","DOIUrl":null,"url":null,"abstract":"<p>The impact of climate change on human social development has been a topic of research for a long time. Ceramic pipes, which are vital components of urban drainage engineering, are crucial means of managing rain hazards and floods. Exploring the historical evolution of ceramic pipes can help in better understanding the interplay between climate change and human behavior. This study examined the diameters of 86 ceramic pipes unearthed from six cultural sites in central China, including Pingliangtai, Taosi, and Erlitou, dated to 4600–3040 a BP. By combining speleothem records from the excavation sites with precipitation and temperature composite curves for China using Pearson correlation analysis, and verifying with pollen records. The results show that changes in rainfall were the main factor influencing the diameters of the ceramic pipes. This indicates that during this period, ancient people in the Central Plains of China were able to adjust the size of the ceramic pipes to regulate the water management capacity of urban water systems, thereby adapting urban development to climate change.</p>","PeriodicalId":13109,"journal":{"name":"Heritage Science","volume":"15 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heritage Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1186/s40494-024-01337-8","RegionNum":1,"RegionCategory":"艺术学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The impact of climate change on human social development has been a topic of research for a long time. Ceramic pipes, which are vital components of urban drainage engineering, are crucial means of managing rain hazards and floods. Exploring the historical evolution of ceramic pipes can help in better understanding the interplay between climate change and human behavior. This study examined the diameters of 86 ceramic pipes unearthed from six cultural sites in central China, including Pingliangtai, Taosi, and Erlitou, dated to 4600–3040 a BP. By combining speleothem records from the excavation sites with precipitation and temperature composite curves for China using Pearson correlation analysis, and verifying with pollen records. The results show that changes in rainfall were the main factor influencing the diameters of the ceramic pipes. This indicates that during this period, ancient people in the Central Plains of China were able to adjust the size of the ceramic pipes to regulate the water management capacity of urban water systems, thereby adapting urban development to climate change.
期刊介绍:
Heritage Science is an open access journal publishing original peer-reviewed research covering:
Understanding of the manufacturing processes, provenances, and environmental contexts of material types, objects, and buildings, of cultural significance including their historical significance.
Understanding and prediction of physico-chemical and biological degradation processes of cultural artefacts, including climate change, and predictive heritage studies.
Development and application of analytical and imaging methods or equipments for non-invasive, non-destructive or portable analysis of artwork and objects of cultural significance to identify component materials, degradation products and deterioration markers.
Development and application of invasive and destructive methods for understanding the provenance of objects of cultural significance.
Development and critical assessment of treatment materials and methods for artwork and objects of cultural significance.
Development and application of statistical methods and algorithms for data analysis to further understanding of culturally significant objects.
Publication of reference and corpus datasets as supplementary information to the statistical and analytical studies above.
Description of novel technologies that can assist in the understanding of cultural heritage.