{"title":"Coupled influence of geosynthetic reinforcement and column configuration on failure dynamics in deep mixed columns under embankment loading","authors":"Gang Zheng, Lei lv, Xiaoxuan Yu, Haizuo Zhou","doi":"10.1007/s11440-024-02344-6","DOIUrl":null,"url":null,"abstract":"<p>The design of column-supported embankments requires a comprehensive evaluation of overall stability and failure mechanisms. Previous research has investigated stress characteristics and failure modes of deep mixing (DM) columns under embankment loads. Depending on column configurations, those near the embankment toe experience flexural potential bending or tilting failure, while those closer to the centre are prone to shear failure. As column spacing decreases, a shift from bending to tilting failure occurs. Inadequate column bending capacity increases the risk of tilting-induced embankment collapse. This study initially showcases the efficacy of geosynthetics in mitigating tilting failure in columns with smaller spacings. The interaction between geosynthetics and diverse configurations on the failure mechanisms of DM columns is meticulously examined. A crucial shift in the failure mechanism from tilting to bending is facilitated by the application of conventional geosynthetics with tensile stiffness, particularly in scenarios with restricted spacing. Geosynthetics effectively mitigate lateral soil displacement, enhance column bending capacity, and intricately redistribute lateral pressures exerted on the columns. Ultimate load, shear strain, and stress are analysed both with and without geosynthetics. Lastly, the influence of geosynthetics on soil reaction distribution and internal forces within columns is deliberated.</p>","PeriodicalId":49308,"journal":{"name":"Acta Geotechnica","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geotechnica","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11440-024-02344-6","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The design of column-supported embankments requires a comprehensive evaluation of overall stability and failure mechanisms. Previous research has investigated stress characteristics and failure modes of deep mixing (DM) columns under embankment loads. Depending on column configurations, those near the embankment toe experience flexural potential bending or tilting failure, while those closer to the centre are prone to shear failure. As column spacing decreases, a shift from bending to tilting failure occurs. Inadequate column bending capacity increases the risk of tilting-induced embankment collapse. This study initially showcases the efficacy of geosynthetics in mitigating tilting failure in columns with smaller spacings. The interaction between geosynthetics and diverse configurations on the failure mechanisms of DM columns is meticulously examined. A crucial shift in the failure mechanism from tilting to bending is facilitated by the application of conventional geosynthetics with tensile stiffness, particularly in scenarios with restricted spacing. Geosynthetics effectively mitigate lateral soil displacement, enhance column bending capacity, and intricately redistribute lateral pressures exerted on the columns. Ultimate load, shear strain, and stress are analysed both with and without geosynthetics. Lastly, the influence of geosynthetics on soil reaction distribution and internal forces within columns is deliberated.
期刊介绍:
Acta Geotechnica is an international journal devoted to the publication and dissemination of basic and applied research in geoengineering – an interdisciplinary field dealing with geomaterials such as soils and rocks. Coverage emphasizes the interplay between geomechanical models and their engineering applications. The journal presents original research papers on fundamental concepts in geomechanics and their novel applications in geoengineering based on experimental, analytical and/or numerical approaches. The main purpose of the journal is to foster understanding of the fundamental mechanisms behind the phenomena and processes in geomaterials, from kilometer-scale problems as they occur in geoscience, and down to the nano-scale, with their potential impact on geoengineering. The journal strives to report and archive progress in the field in a timely manner, presenting research papers, review articles, short notes and letters to the editors.