Coupled influence of geosynthetic reinforcement and column configuration on failure dynamics in deep mixed columns under embankment loading

IF 5.6 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL
Gang Zheng, Lei lv, Xiaoxuan Yu, Haizuo Zhou
{"title":"Coupled influence of geosynthetic reinforcement and column configuration on failure dynamics in deep mixed columns under embankment loading","authors":"Gang Zheng, Lei lv, Xiaoxuan Yu, Haizuo Zhou","doi":"10.1007/s11440-024-02344-6","DOIUrl":null,"url":null,"abstract":"<p>The design of column-supported embankments requires a comprehensive evaluation of overall stability and failure mechanisms. Previous research has investigated stress characteristics and failure modes of deep mixing (DM) columns under embankment loads. Depending on column configurations, those near the embankment toe experience flexural potential bending or tilting failure, while those closer to the centre are prone to shear failure. As column spacing decreases, a shift from bending to tilting failure occurs. Inadequate column bending capacity increases the risk of tilting-induced embankment collapse. This study initially showcases the efficacy of geosynthetics in mitigating tilting failure in columns with smaller spacings. The interaction between geosynthetics and diverse configurations on the failure mechanisms of DM columns is meticulously examined. A crucial shift in the failure mechanism from tilting to bending is facilitated by the application of conventional geosynthetics with tensile stiffness, particularly in scenarios with restricted spacing. Geosynthetics effectively mitigate lateral soil displacement, enhance column bending capacity, and intricately redistribute lateral pressures exerted on the columns. Ultimate load, shear strain, and stress are analysed both with and without geosynthetics. Lastly, the influence of geosynthetics on soil reaction distribution and internal forces within columns is deliberated.</p>","PeriodicalId":49308,"journal":{"name":"Acta Geotechnica","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geotechnica","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11440-024-02344-6","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The design of column-supported embankments requires a comprehensive evaluation of overall stability and failure mechanisms. Previous research has investigated stress characteristics and failure modes of deep mixing (DM) columns under embankment loads. Depending on column configurations, those near the embankment toe experience flexural potential bending or tilting failure, while those closer to the centre are prone to shear failure. As column spacing decreases, a shift from bending to tilting failure occurs. Inadequate column bending capacity increases the risk of tilting-induced embankment collapse. This study initially showcases the efficacy of geosynthetics in mitigating tilting failure in columns with smaller spacings. The interaction between geosynthetics and diverse configurations on the failure mechanisms of DM columns is meticulously examined. A crucial shift in the failure mechanism from tilting to bending is facilitated by the application of conventional geosynthetics with tensile stiffness, particularly in scenarios with restricted spacing. Geosynthetics effectively mitigate lateral soil displacement, enhance column bending capacity, and intricately redistribute lateral pressures exerted on the columns. Ultimate load, shear strain, and stress are analysed both with and without geosynthetics. Lastly, the influence of geosynthetics on soil reaction distribution and internal forces within columns is deliberated.

Abstract Image

土工合成材料加固和立柱构造对路堤荷载下深层混合立柱破坏动力学的耦合影响
柱支撑路堤的设计需要对整体稳定性和破坏机制进行综合评估。以往的研究对深层搅拌(DM)柱在路堤荷载作用下的应力特性和破坏模式进行了调查。根据立柱配置的不同,靠近堤脚的立柱会出现潜在的弯曲或倾斜破坏,而靠近中心的立柱则容易出现剪切破坏。随着支柱间距的减小,会出现从弯曲到倾斜失效的转变。支柱抗弯能力不足会增加倾斜引发堤坝坍塌的风险。这项研究初步展示了土工合成材料在减轻间距较小的支柱倾斜失效方面的功效。土工合成材料与不同结构之间的相互作用对 DM 柱的破坏机制进行了细致的研究。具有拉伸刚度的传统土工合成材料的应用促进了破坏机制从倾斜到弯曲的关键转变,尤其是在间距受限的情况下。土工合成材料可有效缓解土壤的侧向位移,增强支柱的抗弯能力,并巧妙地重新分配施加在支柱上的侧向压力。在使用和不使用土工合成材料的情况下,都对极限荷载、剪切应变和应力进行了分析。最后,还讨论了土工合成材料对土壤反力分布和柱内内力的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Geotechnica
Acta Geotechnica ENGINEERING, GEOLOGICAL-
CiteScore
9.90
自引率
17.50%
发文量
297
审稿时长
4 months
期刊介绍: Acta Geotechnica is an international journal devoted to the publication and dissemination of basic and applied research in geoengineering – an interdisciplinary field dealing with geomaterials such as soils and rocks. Coverage emphasizes the interplay between geomechanical models and their engineering applications. The journal presents original research papers on fundamental concepts in geomechanics and their novel applications in geoengineering based on experimental, analytical and/or numerical approaches. The main purpose of the journal is to foster understanding of the fundamental mechanisms behind the phenomena and processes in geomaterials, from kilometer-scale problems as they occur in geoscience, and down to the nano-scale, with their potential impact on geoengineering. The journal strives to report and archive progress in the field in a timely manner, presenting research papers, review articles, short notes and letters to the editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信