Tobias Halter, Peter Lehmann, Adrian Wicki, Jordan Aaron, Manfred Stähli
{"title":"Optimising landslide initiation modelling with high-resolution saturation prediction based on soil moisture monitoring data","authors":"Tobias Halter, Peter Lehmann, Adrian Wicki, Jordan Aaron, Manfred Stähli","doi":"10.1007/s10346-024-02304-x","DOIUrl":null,"url":null,"abstract":"<p>It has been widely recognised that the degree of soil wetness before precipitation events can be decisive for whether or not shallow rainfall-induced landslides occur. While there are methods to measure and/or model soil wetness in complex topography, they often exhibit limitations in spatial or temporal resolution, hindering their application in regional landside initiation modelling. In this study, we address the need for high-resolution predictions of initial saturation before rainfall events by employing data-driven linear regression models. The models were trained using in-situ soil moisture data collected from six measurement stations located in a landslide-prone region in Switzerland. Various topographic attributes, along with multiple antecedent rainfall and evapotranspiration variables were tested as input for the models. The final model consisted of five measurable variables, including cumulative antecedent rainfall, cumulative evapotranspiration, and the topographic wetness index (TWI). The model effectively reproduced the observed spatial and temporal variability of the in-situ measurements with a coefficient of determination <i>R</i><sup>2</sup> = 0.62 and a root mean square error RMSE = 0.07. Subsequently, we applied the regression model to predict the spatial soil saturation at the onset of actual landslide triggering rainfall events and integrated these patterns into the hydromechanical model STEP-TRAMM. The results demonstrate improvements in predicting observed landslide occurrences compared to simulations assuming spatially uniform initial saturation conditions, highlighting the importance of in-situ measurements and a realistic extrapolation of such data in space and time for accurate modelling of shallow landslide initiation.</p>","PeriodicalId":17938,"journal":{"name":"Landslides","volume":"11 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Landslides","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s10346-024-02304-x","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
It has been widely recognised that the degree of soil wetness before precipitation events can be decisive for whether or not shallow rainfall-induced landslides occur. While there are methods to measure and/or model soil wetness in complex topography, they often exhibit limitations in spatial or temporal resolution, hindering their application in regional landside initiation modelling. In this study, we address the need for high-resolution predictions of initial saturation before rainfall events by employing data-driven linear regression models. The models were trained using in-situ soil moisture data collected from six measurement stations located in a landslide-prone region in Switzerland. Various topographic attributes, along with multiple antecedent rainfall and evapotranspiration variables were tested as input for the models. The final model consisted of five measurable variables, including cumulative antecedent rainfall, cumulative evapotranspiration, and the topographic wetness index (TWI). The model effectively reproduced the observed spatial and temporal variability of the in-situ measurements with a coefficient of determination R2 = 0.62 and a root mean square error RMSE = 0.07. Subsequently, we applied the regression model to predict the spatial soil saturation at the onset of actual landslide triggering rainfall events and integrated these patterns into the hydromechanical model STEP-TRAMM. The results demonstrate improvements in predicting observed landslide occurrences compared to simulations assuming spatially uniform initial saturation conditions, highlighting the importance of in-situ measurements and a realistic extrapolation of such data in space and time for accurate modelling of shallow landslide initiation.
期刊介绍:
Landslides are gravitational mass movements of rock, debris or earth. They may occur in conjunction with other major natural disasters such as floods, earthquakes and volcanic eruptions. Expanding urbanization and changing land-use practices have increased the incidence of landslide disasters. Landslides as catastrophic events include human injury, loss of life and economic devastation and are studied as part of the fields of earth, water and engineering sciences. The aim of the journal Landslides is to be the common platform for the publication of integrated research on landslide processes, hazards, risk analysis, mitigation, and the protection of our cultural heritage and the environment. The journal publishes research papers, news of recent landslide events and information on the activities of the International Consortium on Landslides.
- Landslide dynamics, mechanisms and processes
- Landslide risk evaluation: hazard assessment, hazard mapping, and vulnerability assessment
- Geological, Geotechnical, Hydrological and Geophysical modeling
- Effects of meteorological, hydrological and global climatic change factors
- Monitoring including remote sensing and other non-invasive systems
- New technology, expert and intelligent systems
- Application of GIS techniques
- Rock slides, rock falls, debris flows, earth flows, and lateral spreads
- Large-scale landslides, lahars and pyroclastic flows in volcanic zones
- Marine and reservoir related landslides
- Landslide related tsunamis and seiches
- Landslide disasters in urban areas and along critical infrastructure
- Landslides and natural resources
- Land development and land-use practices
- Landslide remedial measures / prevention works
- Temporal and spatial prediction of landslides
- Early warning and evacuation
- Global landslide database