{"title":"Efficient Localisation of Impact Load for Composite Structure Based on Response Similarity Search and Optimisation","authors":"B. Qiu, W. Li, C. Feng, X. Qu, H. Liu, X. Li","doi":"10.1007/s11340-024-01096-4","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Composite materials have been extensively used in various industry fields due to their distinguishing characteristics. However, low-velocity impact loads would undermine the mechanical properties of composite structures significantly.</p><h3>Objective</h3><p>To improve the integrity and safety of composite structures, it is imperative to unearth the accurate locations of low-velocity impact loads efficiently.</p><h3>Methods</h3><p>In this research, a novel approach hybridising response similarity search and optimisation strategy is developed. The innovation of the approach comes from the adoption of a “divide-and-conquer” strategy to alleviate extensive computations for time history reconstruction during the impact load localisation process so as to optimise computational efficiency and accuracy. In more detail, the approach is comprised of two localisation processes: (i) a coarse process to quickly identify several potential positions for an impact load via response similarity measurements based on time-domain and frequency-domain signals; (ii) a precise process to fine-tune the exact location of the impact load by minimising the nominal residual between the reconstructed and actual responses from the above potential positions.</p><h3>Results</h3><p>Experiments are conducted on a carbon fibre composite sandwich panel to validate and demonstrate the effectiveness and superiority of the approach in terms of localisation efficiency and accuracy. It indicates that the approach achieves 100% accuracy in impact load localisation. It also shows that the approach only takes approximately 4.0 s to localise 20 impact load cases, which is only about one-eighth of the time taken by the traditional optimisation strategy approach to fulfil the same function.</p><h3>Conclusions</h3><p>The hybrid approach designed based on response similarity search and optimisation strategy can greatly improve localisation efficiency and localisation accuracy.</p></div>","PeriodicalId":552,"journal":{"name":"Experimental Mechanics","volume":"64 8","pages":"1311 - 1331"},"PeriodicalIF":2.0000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11340-024-01096-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Composite materials have been extensively used in various industry fields due to their distinguishing characteristics. However, low-velocity impact loads would undermine the mechanical properties of composite structures significantly.
Objective
To improve the integrity and safety of composite structures, it is imperative to unearth the accurate locations of low-velocity impact loads efficiently.
Methods
In this research, a novel approach hybridising response similarity search and optimisation strategy is developed. The innovation of the approach comes from the adoption of a “divide-and-conquer” strategy to alleviate extensive computations for time history reconstruction during the impact load localisation process so as to optimise computational efficiency and accuracy. In more detail, the approach is comprised of two localisation processes: (i) a coarse process to quickly identify several potential positions for an impact load via response similarity measurements based on time-domain and frequency-domain signals; (ii) a precise process to fine-tune the exact location of the impact load by minimising the nominal residual between the reconstructed and actual responses from the above potential positions.
Results
Experiments are conducted on a carbon fibre composite sandwich panel to validate and demonstrate the effectiveness and superiority of the approach in terms of localisation efficiency and accuracy. It indicates that the approach achieves 100% accuracy in impact load localisation. It also shows that the approach only takes approximately 4.0 s to localise 20 impact load cases, which is only about one-eighth of the time taken by the traditional optimisation strategy approach to fulfil the same function.
Conclusions
The hybrid approach designed based on response similarity search and optimisation strategy can greatly improve localisation efficiency and localisation accuracy.
期刊介绍:
Experimental Mechanics is the official journal of the Society for Experimental Mechanics that publishes papers in all areas of experimentation including its theoretical and computational analysis. The journal covers research in design and implementation of novel or improved experiments to characterize materials, structures and systems. Articles extending the frontiers of experimental mechanics at large and small scales are particularly welcome.
Coverage extends from research in solid and fluids mechanics to fields at the intersection of disciplines including physics, chemistry and biology. Development of new devices and technologies for metrology applications in a wide range of industrial sectors (e.g., manufacturing, high-performance materials, aerospace, information technology, medicine, energy and environmental technologies) is also covered.