Hierarchical Fuzzy Framework for EV Supported Islanded Microgrid Frequency Stabilization

IF 5.2 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Abdul Latif;S. M. Suhail Hussain;Ahmed Al-Durra;Atif Iqbal
{"title":"Hierarchical Fuzzy Framework for EV Supported Islanded Microgrid Frequency Stabilization","authors":"Abdul Latif;S. M. Suhail Hussain;Ahmed Al-Durra;Atif Iqbal","doi":"10.1109/OJIES.2024.3421669","DOIUrl":null,"url":null,"abstract":"This article delves into the intricate challenge of frequency stabilization within islanded microgrids (IMGs), particularly exacerbated by the integration of low-inertia renewable power generations. A hierarchical control strategy is proposed, comprising a fuzzy rule-based controller, a two-degree-of-freedom fractional-order PI controller, and a proportional resonant controller. The bolstering of frequency stabilization is achieved by the integration of aggregated electric vehicle storage into the IMG. Adaptive tuning of the fuzzy rule-based load frequency controller's parameters is facilitated by a novel quasi-oppositional prairie dog technique (QOPDT), developed within this study. A comprehensive comparison is conducted between the efficacy of the QOPDT technique and various other optimization methods. Significant improvements in system frequency stability across diverse scenarios are observed with the adoption of the QOPDT-based controller, as evidenced by qualitative assessment. Furthermore, the investigation extends to consider the impact of time-varying delay on the integrated electric vehicle system, broadening the scope of the investigation. Validation of the effectiveness and practicality of the proposed control framework is undertaken utilizing the real-time OPAL-RT 5700 testbed platform.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"5 ","pages":"704-721"},"PeriodicalIF":5.2000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10585315","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10585315/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This article delves into the intricate challenge of frequency stabilization within islanded microgrids (IMGs), particularly exacerbated by the integration of low-inertia renewable power generations. A hierarchical control strategy is proposed, comprising a fuzzy rule-based controller, a two-degree-of-freedom fractional-order PI controller, and a proportional resonant controller. The bolstering of frequency stabilization is achieved by the integration of aggregated electric vehicle storage into the IMG. Adaptive tuning of the fuzzy rule-based load frequency controller's parameters is facilitated by a novel quasi-oppositional prairie dog technique (QOPDT), developed within this study. A comprehensive comparison is conducted between the efficacy of the QOPDT technique and various other optimization methods. Significant improvements in system frequency stability across diverse scenarios are observed with the adoption of the QOPDT-based controller, as evidenced by qualitative assessment. Furthermore, the investigation extends to consider the impact of time-varying delay on the integrated electric vehicle system, broadening the scope of the investigation. Validation of the effectiveness and practicality of the proposed control framework is undertaken utilizing the real-time OPAL-RT 5700 testbed platform.
电动汽车支持的岛式微电网频率稳定分层模糊框架
本文深入探讨了孤岛微电网(IMGs)内频率稳定的复杂挑战,尤其是低惯性可再生能源发电的集成加剧了这一挑战。文章提出了一种分层控制策略,包括基于模糊规则的控制器、二自由度分数阶 PI 控制器和比例谐振控制器。通过将聚合电动汽车储能集成到 IMG 中,实现了频率稳定的增强。基于模糊规则的负载频率控制器参数的自适应调整由本研究中开发的一种新型准位置草原犬技术(QOPDT)提供便利。对 QOPDT 技术和其他各种优化方法的功效进行了综合比较。定性评估结果表明,采用基于 QOPDT 的控制器后,不同情况下的系统频率稳定性都有显著改善。此外,研究还考虑了时变延迟对集成电动汽车系统的影响,扩大了研究范围。利用实时 OPAL-RT 5700 测试平台验证了建议控制框架的有效性和实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Open Journal of the Industrial Electronics Society
IEEE Open Journal of the Industrial Electronics Society ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
10.80
自引率
2.40%
发文量
33
审稿时长
12 weeks
期刊介绍: The IEEE Open Journal of the Industrial Electronics Society is dedicated to advancing information-intensive, knowledge-based automation, and digitalization, aiming to enhance various industrial and infrastructural ecosystems including energy, mobility, health, and home/building infrastructure. Encompassing a range of techniques leveraging data and information acquisition, analysis, manipulation, and distribution, the journal strives to achieve greater flexibility, efficiency, effectiveness, reliability, and security within digitalized and networked environments. Our scope provides a platform for discourse and dissemination of the latest developments in numerous research and innovation areas. These include electrical components and systems, smart grids, industrial cyber-physical systems, motion control, robotics and mechatronics, sensors and actuators, factory and building communication and automation, industrial digitalization, flexible and reconfigurable manufacturing, assistant systems, industrial applications of artificial intelligence and data science, as well as the implementation of machine learning, artificial neural networks, and fuzzy logic. Additionally, we explore human factors in digitalized and networked ecosystems. Join us in exploring and shaping the future of industrial electronics and digitalization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信